Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis

A Corrigendum to this article was published on 22 July 1993

Abstract

AMYOTROPHIC lateral sclerosis (ALS) is a degenerative disorder of motor neurons in the cortex, brainstem and spinal cord1,2. Its cause is unknown and it is uniformly fatal, typically within five years3. About 10% of cases are inherited as an autosomal dominant trait, with high penetrance after the sixth decade4,5. In most instances, sporadic and autosomal dominant familial ALS (FALS) are clinically similar4,6,7. We have previously shown that in some but not all FALS pedigrees the disease is linked to a genetic defect on chromosome 21q (refs 8,9). Here we report tight genetic linkage between FALS and a gene that encodes a cytosolic, Cu/Zn-binding superoxide dismutase (SOD1), a homodimeric metalloenzyme that catalyzes the dismutation of the toxic superoxide anion O–2 to O2 and H2O2 (ref. 10). Given this linkage and the potential role of free radical toxicity in other neurodenegerative disorders11, we investigated SOD1 as a candidate gene in FALS. We identified 11 different SOD1 missense mutations in 13 different FALS families.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Tandan, R. & Bradley, W. G. Ann. Neurol. 18, 271–280 (1985).

    CAS  PubMed  Google Scholar 

  2. Tandan, R. & Bradley, W. G. Ann. Neurol. 18, 419–431 (1985).

    CAS  PubMed  Google Scholar 

  3. Kurland, L. T. Proc. Staff Meet Mayo Clin. 32, 449–462 (1957).

    CAS  PubMed  Google Scholar 

  4. Mulder, D. W. et al. Neurology 36, 511–517 (1986).

    ADS  CAS  PubMed  Google Scholar 

  5. Horton, W. A., Eldridge, R. & Brody, J. A. Neurology 26, 460–464 (1976).

    CAS  PubMed  Google Scholar 

  6. Swerts, L. & Van Den Bergh, R. J. J. genet. Hum. 24, 247–255 (1976).

    CAS  PubMed  Google Scholar 

  7. Huisquinet, H. & Franck, G. Clin. Genet. 18, 109–115 (1980).

    Google Scholar 

  8. Siddique, T. et al. New Engl. J. Med. 324, 1381–1384 (1991).

    CAS  PubMed  Google Scholar 

  9. Siddique, T. et al. Neurology 39, 919–925 (1989).

    CAS  PubMed  Google Scholar 

  10. Fridovich, I. Adv. Enzym. 58, 61–97 (1986).

    CAS  Google Scholar 

  11. Olanow, C. W. Ann. Neurol. 32, S2–9 (1992).

    CAS  PubMed  Google Scholar 

  12. Rosen, D. R. et al. Hum. molec. Genet. 1, 547 (1992).

    CAS  PubMed  Google Scholar 

  13. Ott, J. Am. hum. Genet. 28, 528–529 (1976).

    CAS  Google Scholar 

  14. Ott, J. Analysis of Human Genetics 203–216 (Johns Hopkins Univ. Press, Baltimore, 1991).

    Google Scholar 

  15. Levanon, D. et al. EMBO J. 77–84 (1985).

  16. Hallewell, R. A. et al. in Superoxide Dismutase in Chemistry, Biology and Medicine (ed. Rotilio, G.) 249–256 (Elsevier, 1986).

    Google Scholar 

  17. Orita, M. et al. Genomics 5, 874–879 (1989).

    CAS  PubMed  Google Scholar 

  18. Dausset, J. et al. Genomics 6, 575–577 (1990).

    CAS  PubMed  Google Scholar 

  19. Beckman, J. S. et al. Proc. natn. Acad. Sci. U.S.A. 87, 1620–1624 (1990).

    ADS  CAS  Google Scholar 

  20. Imlay, J. A. & Linns, S. Science 240, 1302–1309 (1988).

    ADS  CAS  PubMed  Google Scholar 

  21. Philips, J. P. et al. Proc. natn. Acad. Sci. U.S.A. 86, 2761–2765 (1989).

    ADS  Google Scholar 

  22. Carlioz, A. & Touati, D. EMBO J. 5, 623–630 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Farr, S. B., D'Ari, R. & Touati, D. Proc. natn. Acad. Sci. U.S.A. 83, 8268–8272 (1986).

    ADS  CAS  Google Scholar 

  24. Chang, E. C. et al. J. biol. Chem. 266, 4417–4424 (1991).

    CAS  PubMed  Google Scholar 

  25. Minotti, G. & Aust, S. D. Chem. phys. Lipids 44, 191–208 (1987).

    CAS  PubMed  Google Scholar 

  26. Crapo, J. D. et al. Proc. natn. Acad. Sci. U.S.A. 89, 10405–10409 (1992).

    ADS  CAS  Google Scholar 

  27. Avraham, K. B. et al. Cell 54, 823–829 (1988).

    CAS  PubMed  Google Scholar 

  28. Yarom, R. et al. J. neurol. Sci. 88, 41–53 (1988).

    CAS  PubMed  Google Scholar 

  29. Avraham, K. B. et al. J. Neurocytol. 20, 208–215 (1991).

    CAS  PubMed  Google Scholar 

  30. Wisnieski, K. et al. Clin. Genet 23, 102–110 (1983).

    Google Scholar 

  31. Ackerman, A. D. et al. New Engl. J. Med. 318, 1666–1669 (1988).

    CAS  PubMed  Google Scholar 

  32. Reynolds, J. F., Wyandt, H. E. & Kelley, T. E. Am. J. hum. Genet. 20, 173–180 (1985).

    CAS  Google Scholar 

  33. Hjalmarsson, K. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6340–6344 (1987).

    ADS  CAS  Google Scholar 

  34. Bewley, G. C. Nucleic Acids Res. 16, 2728 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Henkle, K. J. et al. Infect. Immun. 59, 2063–2069 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Perl-Treves, R. et al. Plant molec. Biol. 11, 609–623 (1988).

    CAS  Google Scholar 

  37. Bermingham-McDonogh, O. et al. Proc. natn. Acad Sci. U.S.A. 85, 4789–4793 (1988).

    ADS  CAS  Google Scholar 

  38. Muller, H. in Sixth internat. Congr. Genetics (ed. Jones, D.) 213–255 (Brooklyn Botanic Gardens, Menasha, 1932).

    Google Scholar 

  39. Park, E. & Horvitz, H. R. Genetics 113, 821–852 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dryja, T. P. et al. Nature 339, 556–558 (1989).

    ADS  CAS  PubMed  Google Scholar 

  41. Herskowitz, I. Nature 329, 219–222 (1987).

    ADS  CAS  PubMed  Google Scholar 

  42. Parge, H. E., Hallewell, R. A. & Tainer, J. A. Proc. natn. Acad. Sci. U.S.A. 89, 6109–6113 (1992).

    ADS  CAS  Google Scholar 

  43. Kitagawa, Y. et al. J. Biochem. 109, 477–485 (1991).

    CAS  PubMed  Google Scholar 

  44. Richardson, J. et al. Proc. natn. Acad. Sci. U.S.A. 72, 1349–1353 (1975).

    ADS  CAS  Google Scholar 

  45. Creagan, R. et al. Humangenetik 20, 203–209 (1973).

    CAS  PubMed  Google Scholar 

  46. Hendrickson, D. et al. Genomics 8, 736–738 (1990).

    CAS  PubMed  Google Scholar 

  47. Shoulson, I. Ann. N.Y. Acad. Sci. 648, 37–41 (1992).

    ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, D., Siddique, T., Patterson, D. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993). https://doi.org/10.1038/362059a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/362059a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing