Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Relationship between asymmetric nodal expression and the direction of embryonic turning

Abstract

GROWTH factors related to TGF-β provide important signals for patterning the vertebrate body plan1–3. One such family member, nodal, is required for formation of the primitive streak during mouse gastrulation4–6. Here we have used a nodal–lacZ reporter allele to demonstrate asymmetric nodal expression in the mouse node, a structure thought to be the functional equivalent of the frog and chick 'organizer'7, and in lateral plate mesoderm cells. We have also identified two additional genes acting with nodal in a pathway determining the left–right body axis. Thus we observe in inv mutant embryos8 that the sidedness of nodal expression correlates with the direction of heart looping and embryonic turning. In contrast, HNF3-β+/- nodallacZ/+ double-heterozygous embryos display LacZ staining on both left and right sides, and frequently exhibit defects in body situs. Taken together, these experiments, along with similar findings in chick9, demonstrate that elements of the genetic pathway that establish the left–right body axis are conserved in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kessler, D. S. & Melton, D. A. Science 266, 596–604 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Kingsley, D. M. Genes Dev. 8, 133–146 (1994).

    Article  CAS  Google Scholar 

  3. Conlon, F. L. & Beddington, R. S. P. Semin. dev. Biol. 6, 249–256 (1995).

    Article  Google Scholar 

  4. Conlon, F. L., Barth, K. S. & Robertson, E. J. Development 111, 969–981 (1991).

    CAS  PubMed  Google Scholar 

  5. Lannaccone, P. M., Zhou, X., Khokha, M., Boucher, D. & Kuehn, M. R. Devl Dyn. 194, 198–208 (1992).

    Article  Google Scholar 

  6. Conlon, F. L. et al. Development 120, 1919–1928 (1994).

    CAS  Google Scholar 

  7. Beddington, R. S. P. Development 120, 613–620 (1994).

    CAS  Google Scholar 

  8. Yokoyama, T. at al. Science 260, 679–682 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Levin, M., Johnson, R. L., Stern, C. D., Kuehn, M. & Tabin, C. Cell 82, 803–814 (1995).

    Article  CAS  Google Scholar 

  10. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. M. & Kuehn, M. R. Nature 361, 543–547 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Mountford, P. et al. Proc. natn. Acad. Sci. U.S.A. 91, 4303–4307 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Cooke, J. Nature 374, 681 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Beddington, R. S. P. J. Embryol. exp. Morph. 64, 87–104 (1981).

    CAS  PubMed  Google Scholar 

  14. Beddington, R. S. P. J. Embryol. exp. Morph. 69, 265–285 (1982).

    CAS  PubMed  Google Scholar 

  15. Lawson, K. A., Meneses, J. J. & Pedersen, R. A. Development 113, 891–911 (1991).

    CAS  PubMed  Google Scholar 

  16. Tam, P. P. L. & Beddington, R. S. P. Development 99, 109–126 (1987).

    CAS  PubMed  Google Scholar 

  17. Smith, J. L., Gesteland, K. M. & Schoenwolf, G. C. Devl Dyn. 201, 279–289 (1994).

    Article  CAS  Google Scholar 

  18. Parameswaran, M. & Tam, P. P. L. Devl. Genet. 17, 16–28 (1995).

    Article  CAS  Google Scholar 

  19. Echelard, Y. et el. Cell 75, 1417–1430 (1993).

    Article  CAS  Google Scholar 

  20. Chang, D. T. et al. Development 120, 3339–3353 (1994).

    CAS  Google Scholar 

  21. Marti, E., Takada, R., Bumcrot, D. A., Sasaki, H. & McMahon, A. P. Development 121, 2537–2547 (1995).

    CAS  PubMed  Google Scholar 

  22. Ang, S.-L. & Rossant, J. Cell 78, 561–574 (1994).

    Article  CAS  Google Scholar 

  23. Weinstein, D. C. et al. Cell 78, 575–588 (1994).

    Article  CAS  Google Scholar 

  24. Poirier, F. & Robertson, E. J. Development 119, 1229–1236 (1993).

    CAS  PubMed  Google Scholar 

  25. Hogan, B., Beddington, R., Costantini, F. & Lacy, E. Manipulating the Mouse Embryo: A Laboratory Manual. (Cold Spring Harbor Laboratory Press, NY, 1994).

    Google Scholar 

  26. Wilkinson, D. G. in In situ Hybridization (ed. Wilkinson, D. G.) 75–83 (IRL, Oxford, 1992).

    Google Scholar 

  27. Kaufman, M. H. Atlas of Mouse Development (Academic, London, 1992).

    Google Scholar 

  28. Neito, M. A., Bennett, M. F., Sargent, M. G. & Wilkinson, D. G. Development 116, 227–237 (1992).

    Google Scholar 

  29. Smith, D. E., Del Amo, F. F. & Gridley, T. Development 116, 1033–1039 (1992).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collignon, J., Varlet, I. & Robertson, E. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996). https://doi.org/10.1038/381155a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/381155a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing