Abstract
Oestrogens are involved in the growth, development and homeostasis of a number of tissues1. The physiological effects of these steroids are mediated by a ligand-inducible nuclear transcription factor, the oestrogen receptor (ER)2. Hormone binding to the ligand-binding domain (LBD) of the ER initiates a series of molecular events culminating in the activation or repression of target genes. Transcriptional regulation arises from the direct interaction of the ER with components of the cellular transcription machinery3,4. Here we report the crystal structures of the LBD of ER in complex with the endogenous oestrogen, 17β-oestradiol, and the selective antagonist raloxifene5, at resolutions of 3.1 and 2.6âà , respectively. The structures provide a molecular basis for the distinctive pharmacophore of the ER and its catholic binding properties. Agonist and antagonist bind at the same site within the core of the LBD but demonstrate different binding modes. In addition, each class of ligand induces a distinct conformation in the transactivation domain of the LBD, providing structural evidence of the mechanism of antagonism.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Ciocca, D. R. & Roig, L. M. V. Estrogen-receptors in human nontarget tissuesâBiological and clinical implications. Endocr. Rev. 16, 35â62 (1995).
Tsai, M.-J. & O'Malley, B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63, 451â486 (1994).
Katzenellenbogen, J. A., O'Malley, B. W. & Katzenellenbogen, B. S. Tripartite steroid hormone receptor pharmacology: Interaction with multiple effector sites as a basis for the cell- and promoter-specific action of these hormones. Mol. Endocrinol. 10, 119â131 (1996).
Beato, M. & Sánchez-Pacheco, A. Interaction of steroid hormone receptors with the transcription initiation complex. Endocr. Rev. 17, 587â609 (1996).
Grese, T. A. et al. Structure-activity relationships of selective estrogen receptor modulators: Modifications to the 2-arylbenzothiophene core of raloxifene. J. Med. Chem. 40, 146â167 (1997).
Wagner, R. L. et al. Astructural role for hormone in the thyroid hormone receptor. Nature 378, 690â697 (1995).
Renaud, J.-P. et al. Crystal structure of the RAR-γ ligand-binding domain bound to all- trans retinoic acid. Nature 378, 681â689 (1995).
Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H. & Moras, D. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-α. Nature 375, 377â382 (1995).
Wurtz, J.-M. et al. Acanonical structure for the ligand-binding domain of nuclear receptors. Nature Struct. Biol. 3, 87â94 (1996).
Kumar, V. & Chambon, P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55, 145â156 (1988).
Fawell, S. E., Lees, J. A., White, R. & Parker, M. G. Characterisation and colocalization of steroid binding and dimerization activities in the mouse estrogen receptor. Cell 60, 953â962 (1990).
Anstead, G. M., Carlson, K. E. & Katzenellenbogen, J. A. The estradiol pharmacophore: Ligand structureâestrogen receptor binding affinity relationships and a model for the receptor binding site. Steroids 62, 268â303 (1997).
Katzellenbogen, B. S. et al. Antiestrogens: Mechanisms and actions in target cells. J. Steroid Biochem. Mol. Biol. 53, 387â393 (1995).
Draper, M. W. et al. Acontrolled trial of raloxifene (LY139481) HCl: Impact on bone turnover and serum lipid profile in healthy postmenopausal women. J. Bone Miner. Res. 11, 835â842 (1996).
Ekena, K., Weis, K. E., Katzenellenbogen, J. A. & Katzenellenbogen, B. S. Different residues of the human estrogen receptor are involved in the recognition of structurally diverse estrogens and antiestrogens. J. Biol. Chem. 272, 5069â5075 (1997).
Cavaillès, V., Dauvois, S., Danielian, P. S. & Parker, M. G. Interaction of proteins with transcriptionally active estrogen receptors. Proc. Natl Acad. Sci. USA 91, 10009â10013 (1994).
L'Horset, F., Dauvois, S., Heery, D. M., Cavaillès, V. & Parker, M. G. RIP-140 interacts with multiple nuclear receptors by means of two distinct sites. Mol. Cell. Biol. 16, 6029â6036 (1996).
vom Baur, E. et al. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1. EMBO J. 15, 110â124 (1996).
Danielian, P. S., White, R., Lees, J. A. & Parker, M. G. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11, 1025â1033 (1992).
Pakdel, F., Reese, J. C. & Katzenellenbogen, B. S. Identification of charged residues in an N-terminal portion of the hormone-binding domain of the human estrogen receptor important in transcriptional activity of the receptor. Mol. Endocrinol. 7, 1408â1417 (1993).
Henttu, P. M. A., Kalkhoven, E. & Parker, M. G. AF-2 activity and recruitment of steroid receptor coactivator 1 to the estrogen receptor depend on a lysine residue conserved in nuclear receptors. Mol. Cell. Biol. 17, 1832â1839 (1997).
McInerney, E. M. & Katzenellenbogen, B. S. Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcriptional activation. J.Biol. Chem. 271, 24172â24178 (1996).
McInerney, E. M., Tsai, M.-J., O'Malley, B. W. & Katzenellenbogen, B. S. Analysis of estrogen receptor transcriptional enhancement by a nuclear hormone receptor coactivator. Proc. Natl Acad. Sci. USA 93, 10069â10073 (1996).
Hegy, G. B. et al. Carboxymethylation of the human estrogen receptor ligand-binding domain-estradiol complex: HPLC/ESMS peptide mapping shows that cysteine 447 does not react with iodoacetic acid. Steroids 61, 367â373 (1996).
Otwinowski, Z. & Minor, W. Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307â326 (1997).
Collaborative Computational Project No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760â763 (1994).
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240â255 (1997).
Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOTâA program to generate schematic diagrams of protein ligand interactions. Prot. Eng. 8, 127â134 (1995).
Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: a programme to check the stereochemical quality of protein structure coordinates. J. Appl. Crystallogr. A 42, 140â149 (1993).
Author information
Authors and Affiliations
Author notes
Correspondence and requests for materials should be addressed to R.E.H. Coordinates have been deposited at the Brookhaven Protein DataBank, accession codes 1ERE for the oestradiol-liganded structure and 1ERR for the raloxifene-liganded structure.
Corresponding author
Rights and permissions
About this article
Cite this article
Brzozowski, A., Pike, A., Dauter, Z. et al. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389, 753â758 (1997). https://doi.org/10.1038/39645
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/39645