Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor

Abstract

One view of the high-transition-temperature (high-Tc) copper oxide superconductors is that they are conventional superconductors where the pairing occurs between weakly interacting quasiparticles (corresponding to the electrons in ordinary metals), although the theory has to be pushed to its limit1. An alternative view is that the electrons organize into collective textures (for example, charge and spin stripes) which cannot be ‘mapped’ onto the electrons in ordinary metals. Understanding the properties of the material would then need quantum field theories of objects such as textures and strings, rather than point-like electrons2,3,4,5,6. In an external magnetic field, magnetic flux penetrates type II superconductors via vortices, each carrying one flux quantum7. The vortices form lattices of resistive material embedded in the non-resistive superconductor, and can reveal the nature of the ground state—for example, a conventional metal or an ordered, striped phase—which would have appeared had superconductivity not intervened, and which provides the best starting point for a pairing theory. Here we report that for one high-Tc superconductor, the applied field that imposes the vortex lattice also induces ‘striped’ antiferromagnetic order. Ordinary quasiparticle models can account for neither the strength of the order nor the nearly field-independent antiferromagnetic transition temperature observed in our measurements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Magneto-transport and neutron diffraction data for La2-xSrxCuO4 as a function of temperature and magnetic field.
Figure 2: Magnetic neutron diffraction data for La2-xSrxCuO4 with x = 0.10.
Figure 3: The dependence on temperature and field of the ordered spin moment squared.

Similar content being viewed by others

References

  1. Monthoux, P., Balatsky, A. V. & Pines, D. Weak-coupling theory of high-temperature superconductivity in the antiferromagnetically correlated copper oxides. Phys. Rev. B 46, 14803–14817 (1992).

    Article  ADS  CAS  Google Scholar 

  2. Zaanen, J. & Gunnarson, O. Charged magnetic domain lines and the magnetism of high-T c oxides. Phys. Rev. B 40, 7391–7394 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Tranquada, J. M. et al. Evidence for stripe correlations of spins and holes in copper-oxide superconductors. Nature 375, 561–563 (1995).

    Article  ADS  Google Scholar 

  4. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Zaanen, J. Stripes defeat the Fermi liquid. Nature 404, 714–715 (2000).

    Article  CAS  Google Scholar 

  6. Zaanen, J., Osman, O. Y. & van Saarloos, W. Metallic stripes: separation of spin, charge, and string fluctuation. Phys. Rev. B 58, R11868–R11871 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Kittel, C. Introduction to Solid State Physics 6th edn, 317–358 (Wiley & Sons, New York, 1986).

    Google Scholar 

  8. Vaknin, D. et al. Antiferromagnetism in La2CuO4. Phys. Rev. Lett. 58, 2802–2805 (1987).

    Article  ADS  CAS  Google Scholar 

  9. Lee, Y. S. et al. Neutron-scattering study of spin-density wave order in the superconducting state of excess-oxygen-doped La2CuO4+y. Phys. Rev. B 60, 3643–3654 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Kimura, H. et al. Neutron-scattering study of static antiferromagnetic correlations in La2-xSrxCu1-yZnyO4. Phys. Rev. B 59, 6517–6523 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Andoh, Y. et al. Resistive upper critical fields and irreversibility lines of optimally doped high-Tc cuprates. Phys. Rev. B 60, 12475–12479 (1999).

    Article  ADS  Google Scholar 

  12. Lake, B. et al. Spin gap and magnetic coherence in a clean high-temperature superconductor. Nature 400, 43–46 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Wakimoto, S., Birgeneau, R. J., Lee, Y. S. & Shirane, G. Hole concentration dependence of the magnetic moment in superconducting and insulating La2-xSrxCuO4. Phys. Rev. B 63, 172501–172505 (2001).

    Article  ADS  Google Scholar 

  14. Katano, S., Sato, M., Yamada, K., Suzuki, T. & Fukase, T. Enhancement of static antiferromagnetic correlations by magnetic field in a superconductor La2-xSrxCuO4 with x = 0.12. Phys. Rev. B 62, R14677–R14680 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Lake, B. et al. Spins in the vortices of a high temperature superconductor. Science 291, 832–834 (2001).

    Article  Google Scholar 

  16. Nohara, M. et al. Quasiparticle density of states of clean and dirty d-wave superconductors: mixed-state specific heat of La2-xSrxCuO4. J. Phys. Soc. Jpn 69, 1602–1605 (2001).

    Article  ADS  Google Scholar 

  17. Lake, B. et al. Antiferromagnetic vortex state in a high-temperature superconductor. Preprint cond-mat/0104026 at 〈http://xxx.lanl.gov〉 (2001).

  18. Savici, A. T. et al. Static magnetism in superconducting stage-4 La2CuO4+y (y = 0.12). Physica B 289–290, 338–342 (2000).

    Article  ADS  Google Scholar 

  19. Aeppli, G. et al. Magnetic order and fluctuations in superconducting UPt3. Phys. Rev. Lett. 60, 615–618 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Arovas, D. P., Berlinsky, A. J., Kallin, C. & Zhang, S.-C. Superconducting vortex with antiferromagnetic core. Phys. Rev. Lett. 79, 2871–2874 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Hedegård, P. Magnetic vortices in high-temperature superconductors. Preprint cond-mat/0102070 at 〈http://xxx.lanl.gov〉 (2001).

  22. Hu, J.-P. & Zhang, S.-C. Theory of static and dynamic antiferromagnetic vortices in LSCO superconductor. Preprint cond-mat/0108273 at 〈http://xxx.lanl.gov〉 (2001).

  23. Demler, E., Sachdev, S. & Zhang, Y. Spin ordering quantum transitions of superconductors in a magnetic field. Phys. Rev. Lett. 87, 067202–067205 (2001).

    Article  ADS  CAS  Google Scholar 

  24. Aeppli, G. et al. Nearly singular magnetic fluctuations in the normal state of a high-Tc superconductor. Science 278, 432–435 (1997).

    Article  Google Scholar 

  25. Boebinger, G. S. et al. Insulator-to-metal crossover in the normal state of La2-xSrxCuO4 near optimal doping. Phys. Rev. Lett. 77, 5417–5420 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Kittel, C. Introduction to Solid State Physics 6th edn, 426–428 (Wiley & Sons, New York, 1986).

    Google Scholar 

Download references

Acknowledgements

We thank P. Dai, P. Hedegård, S. Kivelson, H. Mook, J. Zaanen, S. Sachdev and S.-C. Zhang for discussions. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the US Department of Energy. H.M.R. holds a Marie Curie fellowship funded by the European Community.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Lake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lake, B., Rønnow, H., Christensen, N. et al. Antiferromagnetic order induced by an applied magnetic field in a high-temperature superconductor. Nature 415, 299–302 (2002). https://doi.org/10.1038/415299a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415299a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing