Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular evidence for an ancient duplication of the entire yeast genome

Abstract

Gene duplication is an important source of evolutionary novelty1,2. Most duplications are of just a single gene, but Ohno1 proposed that whole-genome duplication (polyploidy) is an important evolutionary mechanism. Many duplicate genes have been found in Saccharomyces cerevisiae, and these often seem to be phenotypically redundant3,4,5,6,7. Here we show that the arrangement of duplicated genes in the S. cerevisiae genome is consistent with Ohno's hypothesis. We propose a model in which this species is a degenerate tetraploid resulting from a whole-genome duplication that occurred after the divergence of Saccharomyces from Kluyveromyces. Only a small fraction of the genes were subsequently retained in duplicate (most were deleted), and gene order was rearranged by many reciprocal translocations between chromosomes. Protein pairs derived from this duplication event make up 13% of all yeast proteins, and include pairs of transcription factors, protein kinases, myosins, cyclins and pheromones. Tetraploidy may have facilitated the evolution of anaerobic fermentation in Saccharomyces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Locations of similar genes on chromosomes X and XI.
Figure 2: Locations of 55 duplicated chromosomal regions.
Figure 3: Phylogenetic analysis of S.cerevisiae gene pairs and their K. lactis or K. marxianus homologues.

Similar content being viewed by others

References

  1. Ohno, S. Evolution by Gene Duplication (George Allen and Unwin, London, 1970).

    Book  Google Scholar 

  2. Hughes, A. L. The evolution of functionally novel proteins after gene duplication. Proc. R. Soc. Lond. B 256, 119–124 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Kaback, D. B. Yeast genome structure.In The Yeasts Vol. 6(eds Wheals, A. E., Rose, A. H. & Harrison, J. S.) 179–222 (Academic, London, 1995).

    Google Scholar 

  4. Olson, M. V. in The Molecular and Cellular Biology of the Yeast Saccharomyces Vol. 1(eds Broach, J. R., Pringle, J. R. & Jones, E. W.) 1–40 (Cold Spring Harbor Laboratory Press, NY, 1991).

    Google Scholar 

  5. Smith, M. M. Molecular evolution of the Saccharomyces cerevisiae histone gene loci. J. Mol. Evol. 24, 252–259 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Lalo, D., Stettler, S., Mariotte, S., Slonimski, P. P. & Thuriaux, P. Une duplication fossile entre les régions centromériques de deux chromosomes chez la levure. C.R. Acad. Sci. 316, 367–373 (1993).

    CAS  Google Scholar 

  7. Melnick, L. & Sherman, F. The gene clusters ARC and COR on chromosomes 5 and 10, respectively, of Saccharomyces cerevisiae share a common ancestry. J. Mol. Biol. 233, 372–388 (1993).

    Article  CAS  Google Scholar 

  8. Goffeau, A.et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

  10. Ahn, S. & Tanksley, S. D. Comparative linkage maps of the rice and maize genomes. Proc. Natl Acad. Sci. USA 90, 7980–7984 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Spring, J. Vertebrate evolution by interspecific hybridisation–are we polyploid? FEBS Lett. 400, 2–8 (1997).

    Article  CAS  Google Scholar 

  12. Roman, H. & Sands, S. M. Heterogeneity of clones of Saccharomyces derived from haploid ascospores. Proc. Natl Acad. Sci. USA 39, 171–179 (1953).

    Article  ADS  CAS  Google Scholar 

  13. Kielland-Brandt, M. C., Nilsson-Tillgren, T., Gjermansen, C., Holmberg, S. & Pedersen, M. B. Genetics of brewing yeasts.In The Yeasts Vol. 6(eds Wheals, A. E., Rose, A. H. & Harrison, J. S.) 223–254 (Academic, London, 1995).

    Google Scholar 

  14. Ryu, S.-L., Murooka, Y. & Kaneko, Y. Genomic reorganization between two sibling yeast species, Saccharomyces bayanus and Saccharomyces cerevisiae. Yeast 12, 757–764 (1996).

    Article  CAS  Google Scholar 

  15. Hendriks, L.et al. Phylogenetic relationships among ascomycetes and ascomycete-like yeasts as deduced from small subunit ribosomal subunit RNA sequences. Syst. Appl. Microbiol. 15, 98–104 (1992).

    Article  CAS  Google Scholar 

  16. Heus, J. J., Zonneveld, B. J. M., Steensma, H. Y. & van den Berg, J. A. The consensus sequence of Kluyveromyces lactis centromeres shows homology to functional centromeric DNA from Saccharomyces cerevisiae. Mol. Gen. Genet. 236, 355–362 (1993).

    CAS  PubMed  Google Scholar 

  17. Stark, M. J. R. & Milner, J. S. Cloning and analysis of the Kluyveromyces lactis TRP1 gene: a chromosomal locus flanked by genes encoding inorganic pyrophosphatase and histone H3. Yeast 5, 35–50 (1989).

    Article  CAS  Google Scholar 

  18. Larson, G. P., Castanotto, D., Rossi, J. J. & Malafa, M. P. Isolation and functional analysis of a Kluyveromyces lactis RAP1 homologue. Gene 150, 35–41 (1994).

    Article  CAS  Google Scholar 

  19. Bergkamp-Steffens, G. K., Hoekstra, R. & Planta, R. J. Structural and putative regulatory sequences of Kluyveromyces ribosomal protein genes. Yeast 8, 903–922 (1992).

    Article  CAS  Google Scholar 

  20. Hurwitz, N., Segal, M., Marbach, I. & Levitzki, A. Differential activation of yeast adenylyl cyclase by Ras1 and Ras2 depends on the conserved N terminus. Proc. Natl Acad. Sci. USA 92, 11009–11013 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Dohrmann, P. R.et al. Parallel pathways of gene regulation: homologous regulators SWI5 and ACE2 differentially control transcription of HO and chitinase. Genes Dev. 6, 93–104 (1992).

    Article  CAS  Google Scholar 

  22. Schmidt, A., Kunz, J. & Hall, M. N. TOR2 is required for organization of the actin cytoskeleton in yeast. Proc. Natl Acad. Sci. USA 93, 13780–13785 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Jansen, R. P., Dowzer, C., Michaelis, C., Galova, M. & Nasmyth, K. Mother cell-specific HO expression in budding yeast depends on the unconventional myosin Myo4p and other cytoplasmic proteins. Cell 84, 687–697 (1996).

    Article  CAS  Google Scholar 

  24. Friis, E. M., Chaloner, W. G. & Crane, P. R. (eds) The Origins of Angiosperms and their Biological Consequences (Cambridge Univ. Press, 1987).

    Google Scholar 

  25. Fitch, W. M. & Margoliash, E. Construction of phylogenetic trees. Science 155, 279–284 (1967).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues in the yeast genome project; J. I. Garrels for use of the YPD database, which was central to this study; G. Butler, A. T. Lloyd, L. Skrabanek, C. Seoighe, B. Baum and R.Rothstein for comments; and S. Kossida, M. Lewis and R. Keogh for initial work on this project. Yeast genome sequencing in our laboratory was supported by the European Union. In silico analysis is supported by the European Union and Forbairt (to K.H.W.) and the Wellcome Trust (to D.C.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth H. Wolfe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, K., Shields, D. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387, 708–713 (1997). https://doi.org/10.1038/42711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/42711

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing