Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses

Abstract

Endogenous retroviruses are multicopy retroelements accounting for nearly 10% of murine or human genomes1,2. These retroelements spread into our ancestral genome millions of years ago and have acted as a driving force for genome evolution2,3,4. Endogenous retroviruses may also be deleterious for their host, and have been implicated in cancers and autoimmune diseases5. Most retroelements have lost replication competence because of the accumulation of inactivating mutations, but several, including some murine intracisternal A-particle (IAP) and MusD sequences, are still mobile6,7. These elements encode a reverse transcriptase activity and move by retrotransposition, an intracellular copy-and-paste process involving an RNA intermediate. The host has developed mechanisms to silence their expression, mainly cosuppression and gene methylation4,8. Here we identify another level of antiviral control, mediated by APOBEC3G, a member of the cytidine deaminase family that was previously shown to block HIV replication9,10,11,12. We show that APOBEC3G markedly inhibits retrotransposition of IAP and MusD elements, and induces G-to-A hypermutations in their DNA copies. APOBEC3G, by editing viral genetic material, provides an ancestral wide cellular defence against endogenous and exogenous invaders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: APOBEC3G inhibits the retrotransposition of endogenous retroviruses.
Figure 2: APOBEC3G promotes G-to-A hypermutation of endogenous retroviruses.
Figure 3: Distribution of nucleotide substitutions in MusD, IAP and L1Md retroelements present in the mouse genome.
Figure 4: Influence of neighbouring nucleotides on G-to-A mutations in retroelements present in the mouse genome.

Similar content being viewed by others

References

  1. Boeke, J. D. & Stoye, J. in Retroviruses (eds Coffin, J. M., Hugues, S. H. & Varmus, H. E.) 343–436 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1997)

    Google Scholar 

  2. Bannert, N. & Kurth, R. Retroelements and the human genome: New perspectives on an old relation. Proc. Natl Acad. Sci. USA 101(suppl. 2), 14572–14579 (2004)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Johnson, W. E. & Coffin, J. M. Constructing primate phylogenies from ancient retrovirus sequences. Proc. Natl Acad. Sci. USA 96, 10254–10260 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kazazian, H. H. Jr. Mobile elements: drivers of genome evolution. Science 303, 1626–1632 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lower, R. The pathogenic potential of endogenous retroviruses: facts and fantasies. Trends Microbiol. 7, 350–356 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Dewannieux, M., Dupressoir, A., Harper, F., Pierron, G. & Heidmann, T. Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells. Nature Genet. 36, 534–539 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Ribet, D., Dewannieux, M. & Heidmann, T. An active murine transposon family pair: retrotransposition of ‘master’ MusD copies and ETn trans-mobilization. Genome Res. 14, 2261–2267 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bourc'his, D. & Bestor, T. H. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96–99 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002)

    ADS  CAS  PubMed  Google Scholar 

  10. Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003)

    Article  CAS  PubMed  Google Scholar 

  13. Heidmann, O. & Heidmann, T. Retrotransposition of a mouse IAP sequence tagged with an indicator gene. Cell 64, 159–170 (1991)

    Article  CAS  PubMed  Google Scholar 

  14. Dupressoir, A. & Heidmann, T. Germ line-specific expression of intracisternal A-particle retrotransposons in transgenic mice. Mol. Cell. Biol. 16, 4495–4503 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Baust, C. et al. Structure and expression of mobile ETnII retroelements and their coding-competent MusD relatives in the mouse. J. Virol. 77, 11448–11458 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jarmuz, A. et al. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Genomics 79, 285–296 (2002)

    Article  CAS  PubMed  Google Scholar 

  17. Wedekind, J. E., Dance, G. S., Sowden, M. P. & Smith, H. C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Lecossier, D., Bouchonnet, F., Clavel, F. & Hance, A. J. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 300, 1112 (2003)

    Article  CAS  PubMed  Google Scholar 

  19. Suspene, R. et al. APOBEC3G is a single-stranded DNA cytidine deaminase and functions independently of HIV reverse transcriptase. Nucleic Acids Res. 32, 2421–2429 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, Q. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nature Struct. Mol. Biol. 11, 435–442 (2004)

    Article  CAS  Google Scholar 

  21. Wiegand, H. L., Doehle, B. P., Bogerd, H. P. & Cullen, B. R. A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV-2 Vif proteins. EMBO J. 23, 2451–2458 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bishop, K. N., Holmes, R. K., Sheehy, A. M. & Malim, M. H. APOBEC-mediated editing of viral RNA. Science 305, 645 (2004)

    Article  CAS  PubMed  Google Scholar 

  23. Marin, M., Rose, K. M., Kozak, S. L. & Kabat, D. HIV-1 Vif protein binds the editing enzyme APOBEC3G and induces its degradation. Nature Med. 9, 1398–1403 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W. C. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell 12, 591–601 (2003)

    Article  CAS  PubMed  Google Scholar 

  25. Sawyer, S. L., Emerman, M. & Malik, H. S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2, E275 (2004)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Moran, J. V. et al. High frequency retrotransposition in cultured mammalian cells. Cell 87, 917–927 (1996)

    Article  CAS  PubMed  Google Scholar 

  27. Goodier, J. L., Ostertag, E. M., Du, K. & Kazazian, H. H. Jr. A novel active L1 retrotransposon subfamily in the mouse. Genome Res. 11, 1677–1685 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liddament, M. T., Brown, W. L., Schumacher, A. J. & Harris, R. S. APOBEC3F properties and hypermutation preferences indicate activity against HIV-1 in vivo. Curr. Biol. 14, 1385–1391 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. Turelli, P., Vianin, S. & Trono, D. The innate antiretroviral factor APOBEC3G does not affect human LINE-1 retrotransposition in a cell culture assay. J. Biol. Chem. 279, 43371–43373 (2004)

    Article  CAS  PubMed  Google Scholar 

  30. Esnault, C., Casella, J. F. & Heidmann, T. A Tetrahymena thermophila ribozyme-based indicator gene to detect transposition of marked retroelements in mammalian cells. Nucleic Acids Res. 30, e49 (2002)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Wain-Hobson for useful comments, N. Landau and the NIH AIDS reagents program for the gift of reagents. This work was supported by grants from the Institut Pasteur, the Institut Gustave Roussy, the ANRS, Sidaction, the Ligue Nationale contre le Cancer, the CNRS, INSERM and the European Community. F.D. is a fellow of Sidaction. Some relevant original papers have not been cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thierry Heidmann or Olivier Schwartz.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure S1

IAP and MusD base mutation spectra induced by APOBEC3G in the cell-based retrotransposition assay. (PPT 89 kb)

Supplementary Figure S2

Distibution of G-to-A hypermutations in MusD sequences found in the mouse genome. (PPT 134 kb)

Supplementary Figure Legends

This file contains legends to Supplementary Figures. (DOC 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esnault, C., Heidmann, O., Delebecque, F. et al. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433, 430–433 (2005). https://doi.org/10.1038/nature03238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing