Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A coding-independent function of gene and pseudogene mRNAs regulates tumour biology

Abstract

The canonical role of messenger RNA (mRNA) is to deliver protein-coding information to sites of protein synthesis. However, given that microRNAs bind to RNAs, we hypothesized that RNAs could possess a regulatory role that relies on their ability to compete for microRNA binding, independently of their protein-coding function. As a model for the protein-coding-independent role of RNAs, we describe the functional relationship between the mRNAs produced by the PTEN tumour suppressor gene and its pseudogene PTENP1 and the critical consequences of this interaction. We find that PTENP1 is biologically active as it can regulate cellular levels of PTEN and exert a growth-suppressive role. We also show that the PTENP1 locus is selectively lost in human cancer. We extended our analysis to other cancer-related genes that possess pseudogenes, such as oncogenic KRAS. We also demonstrate that the transcripts of protein-coding genes such as PTEN are biologically active. These findings attribute a novel biological role to expressed pseudogenes, as they can regulate coding gene expression, and reveal a non-coding function for mRNAs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PTENP1 is targeted by PTEN -targeting miRNAs.
Figure 2: PTENP1 3′ UTR exerts a tumour suppressive function by acting as a decoy for PTEN -targeting miRNAs.
Figure 3: Loss of PTENP1 in cancer.
Figure 4: PTEN 3′ UTR and KRAS1P 3′ UTR function as decoys and a general model for endogenous miRNA decoy mechanism.

Similar content being viewed by others

References

  1. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008)

    Article  CAS  Google Scholar 

  2. Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285, 2122–2125 (1999)

    Article  CAS  Google Scholar 

  3. Trotman, L. C. et al. Pten dose dictates cancer progression in the prostate. PLoS Biol. 1, e59 (2003)

    Article  Google Scholar 

  4. Alimonti, A. et al. Subtle variations in Pten dose determine cancer susceptibility. Nature Genet. (2010)

  5. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nature Immunol. 9, 405–414 (2008)

    Article  CAS  Google Scholar 

  6. Takakura, S. et al. Oncogenic role of miR-17–92 cluster in anaplastic thyroid cancer cells. Cancer Sci. 99, 1147–1154 (2008)

    Article  CAS  Google Scholar 

  7. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003)

    Article  CAS  Google Scholar 

  8. Meng, F. et al. Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. Gastroenterology 130, 2113–2129 (2006)

    Article  CAS  Google Scholar 

  9. Huse, J. T. et al. The PTEN-regulating microRNA miR-26a is amplified in high-grade glioma and facilitates gliomagenesis in vivo. Genes Dev. 23, 1327–1337 (2009)

    Article  CAS  Google Scholar 

  10. Kato, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nature Cell Biol. 11, 881–889 (2009)

    Article  CAS  Google Scholar 

  11. Yang, H. et al. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68, 425–433 (2008)

    Article  CAS  Google Scholar 

  12. Fujii, G. H., Morimoto, A. M., Berson, A. E. & Bolen, J. B. Transcriptional analysis of the PTEN/MMAC1 pseudogene, ΨPTEN. Oncogene 18, 1765–1769 (1999)

    Article  CAS  Google Scholar 

  13. D’Errico, I., Gadaleta, G. & Saccone, C. Pseudogenes in metazoa: origin and features. Brief. Funct. Genomics Proteomics 3, 157–167 (2004)

    Article  Google Scholar 

  14. Harrison, P. M., Zheng, D., Zhang, Z., Carriero, N. & Gerstein, M. Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability. Nucleic Acids Res. 33, 2374–2383 (2005)

    Article  CAS  Google Scholar 

  15. Birney, E. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007)

    Article  ADS  CAS  Google Scholar 

  16. Bristow, J., Gitelman, S. E., Tee, M. K., Staels, B. & Miller, W. L. Abundant adrenal-specific transcription of the human P450c21A pseudogene. J. Biol. Chem. 268, 12919–12924 (1993)

    CAS  PubMed  Google Scholar 

  17. Suo, G. et al. Oct4 pseudogenes are transcribed in cancers. Biochem. Biophys. Res. Commun. 337, 1047–1051 (2005)

    Article  CAS  Google Scholar 

  18. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009)

    Article  CAS  Google Scholar 

  19. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008)

    Article  ADS  CAS  Google Scholar 

  21. Lal, A. et al. miR-24 inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625 (2009)

    Article  CAS  Google Scholar 

  22. Ventura, A. & Jacks, T. MicroRNAs and cancer: short RNAs go a long way. Cell 136, 586–591 (2009)

    Article  CAS  Google Scholar 

  23. Cummins, J. M. et al. The colorectal microRNAome. Proc. Natl Acad. Sci. USA 103, 3687–3692 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Petrocca, F. et al. E2F1-regulated microRNAs impair TGFβ-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13, 272–286 (2008)

    Article  CAS  Google Scholar 

  25. Lu, Z. et al. MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27, 4373–4379 (2008)

    Article  CAS  Google Scholar 

  26. Pain, D., Chirn, G. W., Strassel, C. & Kemp, D. M. Multiple retropseudogenes from pluripotent cell-specific gene expression indicates a potential signature for novel gene identification. J. Biol. Chem. 280, 6265–6268 (2005)

    Article  CAS  Google Scholar 

  27. van der Wal, J. E. et al. Comparative genomic hybridisation divides retinoblastomas into a high and a low level chromosomal instability group. J. Clin. Pathol. 56, 26–30 (2003)

    Article  CAS  Google Scholar 

  28. Zimonjic, D. B., Keck, C. L., Thorgeirsson, S. S. & Popescu, N. C. Novel recurrent genetic imbalances in human hepatocellular carcinoma cell lines identified by comparative genomic hybridization. Hepatology 29, 1208–1214 (1999)

    Article  CAS  Google Scholar 

  29. Plantaz, D. et al. Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization. Am. J. Pathol. 150, 81–89 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008)

    Article  ADS  CAS  Google Scholar 

  31. Okamura, K., Chung, W. J. & Lai, E. C. The long and short of inverted repeat genes in animals: microRNAs, mirtrons and hairpin RNAs. Cell Cycle 7, 2840–2845 (2008)

    Article  CAS  Google Scholar 

  32. Robine, N. et al. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr. Biol. 19, 2066–2076 (2009)

    Article  CAS  Google Scholar 

  33. Seitz, H. Redefining microRNA targets. Curr. Biol. 19, 870–873 (2009)

    Article  CAS  Google Scholar 

  34. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033–1037 (2007)

    Article  CAS  Google Scholar 

  35. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721–726 (2007)

    Article  CAS  Google Scholar 

  36. Lee, D. Y. et al. A 3′-untranslated region (3′UTR) induces organ adhesion by regulating miR-199a* functions. PLoS ONE 4, e4527 (2009)

    Article  ADS  Google Scholar 

  37. Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M. A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nature Struct. Mol. Biol. 16, 144–150 (2009)

    Article  CAS  Google Scholar 

  38. Balasubramanian, S. et al. Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes. Genome Biol. 10, R2 (2009)

    Article  Google Scholar 

  39. Winter, J., Jung, S., Keller, S., Gregory, R. I. & Diederichs, S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nature Cell Biol. 11, 228–234 (2009)

    Article  CAS  Google Scholar 

  40. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007)

    Article  ADS  CAS  Google Scholar 

  41. Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009)

    Article  CAS  Google Scholar 

  42. Kim, J. & Bartel, D. P. Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression. Nature Biotechnol. 27, 472–477 (2009)

    Article  CAS  Google Scholar 

  43. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009)

    Article  ADS  CAS  Google Scholar 

  44. Frith, M. C. et al. Pseudo-messenger RNA: phantoms of the transcriptome. PLoS Genet. 2, e23 (2006)

    Article  Google Scholar 

  45. Jiang, S. L., Lozanski, G., Samols, D. & Kushner, I. Induction of human serum amyloid A in Hep 3B cells by IL-6 and IL-1 beta involves both transcriptional and post-transcriptional mechanisms. J. Immunol. 154, 825–831 (1995)

    CAS  PubMed  Google Scholar 

  46. Scaglioni, P. P. & Pandolfi, P. P. The theory of APL revisited. Curr. Top. Microbiol. Immunol. 313, 85–100 (2007)

    CAS  PubMed  Google Scholar 

  47. Berger, M. F. et al. Integrative analysis of the melanoma transcriptome. Genome Res. 20, 413–427 (2010)

    Article  CAS  Google Scholar 

  48. Stephens, P. J. et al. Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature 462, 1005–1010 (2009)

    Article  ADS  CAS  Google Scholar 

  49. Maeda, T. et al. Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature 433, 278–285 (2005)

    Article  ADS  CAS  Google Scholar 

  50. Myers, M. P. et al. P-TEN, the tumour suppressor from human chromosome 10q23, is a dual-specificity phosphatase. Proc. Natl Acad. Sci. USA 94, 9052–9057 (1997)

    Article  ADS  CAS  Google Scholar 

  51. Drabkin, H. A. et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 16, 186–195 (2002)

    Article  CAS  Google Scholar 

  52. Chen, C. et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pandolfi laboratory members for critical discussions, in particular A. Carracedo for critical input; S. Feng for technical assistance. We thank B. Vogelstein for DICER−/− cells; T. Yuan for assistance with FACS analysis; A. Tuccoli for assistance with miRNA RT–PCR; I. Osman for support and suggestions. L.P. was supported by fellowships from the Istituto Toscano Tumori and the American Italian Cancer Foundation. L.S. was supported by fellowships from the Human Frontier Science Program and the Canadian Institutes of Health Research. This work was supported by NIH grant R01 CA-82328-09 to P.P.P.

Author information

Authors and Affiliations

Authors

Contributions

P.P.P. spearheaded and supervised the project; L.P., L.S. and P.P.P. designed experiments; L.P., L.S. and W.J.H. performed experiments; B.C. provided prostate cancer patient sample cDNAs. J.Z. performed all bioinformatic analyses. L.P., L.S. and P.P.P. analysed the data and wrote the paper. All authors critically discussed the results and the manuscript.

Corresponding author

Correspondence to Pier Paolo Pandolfi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Data, Supplementary Figures 1- 19 with legends, Supplementary Tables 1-3 and References. (PDF 7582 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poliseno, L., Salmena, L., Zhang, J. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010). https://doi.org/10.1038/nature09144

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09144

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer