Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Eocene lizard from Germany reveals amphisbaenian origins

Abstract

Amphisbaenia is a speciose clade of fossorial lizards characterized by a snake-like body and a strongly reinforced skull adapted for head-first burrowing1,2. The evolutionary origins of amphisbaenians are controversial, with molecular data uniting them with lacertids3,4, a clade of Old World terrestrial lizards, whereas morphology supports a grouping with snakes and other limbless squamates5,6,7,8,9. Reports of fossil stem amphisbaenians10 have been falsified11, and no fossils have previously tested these competing phylogenetic hypotheses or shed light on ancestral amphisbaenian ecology. Here we report the discovery of a new lacertid-like lizard from the Eocene Messel locality of Germany that provides the first morphological evidence for lacertid–amphisbaenian monophyly on the basis of a reinforced, akinetic skull roof and braincase, supporting the view that body elongation and limblessness in amphisbaenians and snakes evolved independently. Morphometric analysis of body shape and ecology in squamates indicates that the postcranial anatomy of the new taxon is most consistent with opportunistically burrowing habits, which in combination with cranial reinforcement indicates that head-first burrowing evolved before body elongation and may have been a crucial first step in the evolution of amphisbaenian fossoriality.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cryptolacerta hassiaca gen. et sp. nov., holotype (SMF ME 2604).
Figure 2: Cryptolacerta hassiaca gen. et sp. nov., holotype (SMF ME 2604), anatomical features as revealed by CT.
Figure 3: Phylogeny of Cryptolacerta and the evolution of cranial akinesis in the origin of the amphisbaenian skull.
Figure 4: Ecomorphology of Cryptolacerta.

Similar content being viewed by others

References

  1. Kearney, M. Systematics of the Amphisbaenia (Lepidosauria: Squamata) based on morphological evidence from recent and fossil forms. Herpet . Monog 17, 1–74 (2003)

    Google Scholar 

  2. Gans, C. & Montero, R. in Biology of the Reptilia, Vol. 21 (eds Gans, C., Gaunt, A. S. & Adler, K. ) 621–738 (Society for the Study of Amphibians and Reptiles, 2008)

    Google Scholar 

  3. Townsend, T. M., Larson, A., Louis, E. & Macey, J. R. Molecular phylogenetics of Squamata: the position of snakes, amphisbaenians, and dibamids, and the root of the squamate tree. Syst. Biol. 53, 735–757 (2004)

    Article  Google Scholar 

  4. Vidal, N. & Hedges, S. B. The phylogeny of squamate reptiles (lizards, and amphisbaenians) inferred from nine protein-coding genes. C. R. Biol. 328, 1000–1008 (2005)

    Article  CAS  Google Scholar 

  5. Estes, R., de Queiroz, K. & Gauthier, J. A. in Phylogenetic Relationships of the Lizard Families (eds Estes, R. & Pregill, G. K. ) 119–281 (Stanford Univ. Press, 1988)

    Google Scholar 

  6. Rieppel, O. A review of the origin of snakes. Evol. Biol. 22, 37–130 (1988)

    Article  Google Scholar 

  7. Hallerman, J. Thee ethmoidal regionof Dibamus taylori (Squamata: Dibamidae), with a phylogenetic hypothesis on dibamid relationships within Squamata. Zool. J. Linn. Soc. 122, 385–426 (1998)

    Article  Google Scholar 

  8. Evans, S. & Barbadillo, L. J. An unusual lizard from the Early Cretaceous of Las Hoyas, Spain. Zool. J. Linn. Soc. 124, 235–265 (1998)

    Article  Google Scholar 

  9. Conrad, J. L. Phylogeny and systematics of Squamata (Reptilia) based on morphology. Bull. Am. Mus. Nat. Hist. 310, 1–182 (2008)

    Article  Google Scholar 

  10. Wu, X.-C. et al. Oldest known amphisbaenian from the Upper Cretaceous of Chinese Inner Mongolia. Nature 366, 57–59 (1993)

    Article  ADS  Google Scholar 

  11. Kearney, M. The phylogenetic position of Sineoamphisbaena hexatabularis reexamined. J. Vertebr. Paleontol. 23, 394–403 (2003)

    Article  Google Scholar 

  12. Franzen, J. L., Weber, J. & Wuttke, M. Senckenberg-Grabungen in der Grube Messel bei Darmstadt. 3. Ergebnisse 1979–1981. Cour. Forsch.-Inst. Senckenberg 54, 12–15 (1982)

    Google Scholar 

  13. Berman, D. S. Spathorhynchus fossorium, a middle Eocene amphisbaenian (Reptilia) from Wyoming. Copeia 1973, 704–721 (1973)

    Article  Google Scholar 

  14. Berman, D. S. Spathorhynchus natronicus, a new species of rhineurid amphisbaenian (Reptilia) from the Early Oligocene of Wyoming. J. Paleontol. 51, 986–991 (1977)

    Google Scholar 

  15. Kearney, M., Maisano, J. A. & Rowe, T. Cranial anatomy of the extinct amphisbaenian Rhineura hatcherii (Squamata, Amphisbaenia) based on high-resolution X-ray computed tomography. J. Morphol. 264, 1–33 (2005)

    Article  Google Scholar 

  16. Lee, M. S. Y. Hidden support from unpromising data sets strongly unites snakes with anguimorph ‘lizards’. J. Evol. Biol. 22, 1308–1316 (2009)

    Article  CAS  Google Scholar 

  17. Wiens, J. J. et al. Combining phylogenomics and fossils in higher level squamate reptile phylogeny: molecular data change the placement of fossil taxa. Syst. Biol. 59, 675–688 (2010)

    Article  Google Scholar 

  18. Lee, M. S. Y. Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships. Biol. J. Linn. Soc. 65, 369–453 (1998)

    Article  Google Scholar 

  19. Wiens, J. J., Brandley, M. C. & Reeder, T. W. Why does a trait evolve multiple times within a clade? Repeated evolution of snakelike body form in squamate reptiles. Evolution 60, 123–141 (2006)

    PubMed  Google Scholar 

  20. Brandley, M. C., Huelsenbeck, J. P. & Wiens, J. J. Rates and patterns in the evolution of snake-like body form in squamate reptiles: evidence for repeated re-evolution of lost digits and long-term persistence of intermediate body forms. Evolution 62, 2042–2064 (2008)

    Article  Google Scholar 

  21. Gans, C. Tetrapod limblessness: evolution and functional corrollaries. Am. Zool. 15, 455–467 (1975)

    Article  Google Scholar 

  22. Greer, A. E. Limb reduction in squamates: identification of the lineages and discussion of the trends. J. Herpetol. 25, 166–173 (1991)

    Article  Google Scholar 

  23. Wiens, J. J. & Slingluff, J. L. How lizards turn into snakes: a phylogenetic analysis of body-form evolution in anguid lizards. Evolution 55, 2303–2318 (2001)

    Article  CAS  Google Scholar 

  24. Hipsley, C. A., Himmelmann, L., Metzler, D. & Müller, J. Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic colonization of African lacertid lizards. BMC Evol. Biol. 9, 151 (2009)

    Article  Google Scholar 

  25. Estes, R. Handbuch der Paläoherpetologie Pt 10 (Gustav Fischer, 1983)

    Google Scholar 

  26. Müller, J. Osteology and relationships of Eolacerta robusta, a lizard from the middle Eocene of Germany (Reptilia, Squamata). J. Vertebr. Paleontol. 21, 261–278 (2001)

    Article  Google Scholar 

  27. Rieppel, O., Conrad, J. L. & Maisano, J. A. New morphological data for Eosaniwa koehni Haubold 1977, and a revised phylogenetic analysis. J. Paleontol. 81, 760–769 (2007)

    Article  Google Scholar 

  28. Weber, S. Ornatocephalus metzleri gen. et spec. nov. (Lacertilia, Scincoida) – taxonomy and paleobiology of a basal scincoid lizard from the Messel formation (middle Eocene: basal Lutetian, Geiseltalium), Germany. Abh. Senckenb. Naturf. Gesellsch. 561, 1–159 (2004)

    Google Scholar 

  29. Popov, S. V. et al. Lithological-Paleogeographic maps of the Paretethys. 10 maps Late Eocene to Pliocene. Cour. Forsch.-Inst. Senckenberg 250, 1–46 (2004)

    Google Scholar 

  30. The Deep Scaly Project. Rhineura floridana, Florida worm lizard. 〈http://digimorph.org/specimens/Rhineura_floridana/〉 (Digimorph, 2008)

Download references

Acknowledgements

We thank S. Schaal for making the specimen available for study, J. J. Wiens for providing his morphometric data set of extant squamates, J. L. Conrad for providing his morphological data set of fossil and extant squamates, I. Manke for technical and administrative support, H. Mewis, H. Stöhr and A. Paulke for technical support, C. Bell and D. Evans for discussion, and P. Holroyd, M. Kroniger, M. Cunningham, M.-O. Rödel, K. Seymour, H.-D. Sues and F. Tillack for access to specimens. J.J.H. was funded by Natural Sciences and Engineering Research Council of Canada Discovery and Research Tools and Instruments grants, R.R.R. was funded by a Natural Sciences and Engineering Research Council of Canada Discovery grant and the Alexander von Humboldt-Stiftung.

Author information

Authors and Affiliations

Authors

Contributions

J.M., C.A.H., J.J.H. and R.R.R. contributed to project planning and anatomical analysis. J.M., C.A.H., N.K. and A.H. contributed to micro-CT scanning. J.M. contributed to phylogenetic analysis. J.J.H. contributed to ecomorphological analysis. M.W. contributed to project initiation. All authors contributed to manuscript and figure preparation.

Corresponding author

Correspondence to Johannes Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Methods, Supplementary Images, Supplementary Analysis and Data, a Supplementary Data Matrix, Supplementary Tables and additional references. (PDF 6843 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, J., Hipsley, C., Head, J. et al. Eocene lizard from Germany reveals amphisbaenian origins. Nature 473, 364–367 (2011). https://doi.org/10.1038/nature09919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09919

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing