Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Adult mouse cortical cell taxonomy revealed by single cell transcriptomics

Abstract

Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. We constructed a cellular taxonomy of one cortical region, primary visual cortex, in adult mice on the basis of single-cell RNA sequencing. We identified 49 transcriptomic cell types, including 23 GABAergic, 19 glutamatergic and 7 non-neuronal types. We also analyzed cell type–specific mRNA processing and characterized genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we found that some of our transcriptomic cell types displayed specific and differential electrophysiological and axon projection properties, thereby confirming that the single-cell transcriptomic signatures can be associated with specific cellular properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Workflow overview.
Figure 2: Cell types: genetic access and laminar distribution.
Figure 3: Cortical cell types and corresponding marker genes.
Figure 4: Cell types summary and relationships.
Figure 5: Cell type–specific mRNA processing.
Figure 6: Transcriptomic signatures and axonal projections.
Figure 7: Ndnf interneurons: genetic access and physiological properties.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Lein, E.S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    CAS  PubMed  Google Scholar 

  2. Hawrylycz, M.J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Harris, K.D. & Shepherd, G.M. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170–181 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. DeFelipe, J. et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. 14, 202–216 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sugino, K. et al. Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99–107 (2006).

    CAS  PubMed  Google Scholar 

  6. Rudy, B., Fishell, G., Lee, S. & Hjerling-Leffler, J. Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons. Dev. Neurobiol. 71, 45–61 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Sorensen, S.A. et al. Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. Cereb. Cortex 25, 433–449 (2015).

    PubMed  Google Scholar 

  8. Greig, L.C., Woodworth, M.B., Galazo, M.J., Padmanabhan, H. & Macklis, J.D. Molecular logic of neocortical projection neuron specification, development and diversity. Nat. Rev. Neurosci. 14, 755–769 (2013).

    CAS  PubMed  Google Scholar 

  9. Toledo-Rodriguez, M. et al. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb. Cortex 14, 1310–1327 (2004).

    PubMed  Google Scholar 

  10. Ascoli, G.A. et al. Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat. Rev. Neurosci. 9, 557–568 (2008).

    CAS  PubMed  Google Scholar 

  11. Belgard, T.G. et al. A transcriptomic atlas of mouse neocortical layers. Neuron 71, 605–616 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, Y. et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–11947 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pollen, A.A. et al. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32, 1053–1058 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Usoskin, D. et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nat. Neurosci. 18, 145–153 (2015).

    CAS  PubMed  Google Scholar 

  16. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    CAS  PubMed  Google Scholar 

  17. Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Glickfeld, L.L., Reid, R.C. & Andermann, M.L. A mouse model of higher visual cortical function. Curr. Opin. Neurobiol. 24, 28–33 (2014).

    CAS  PubMed  Google Scholar 

  19. Harris, J.A. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits 8, 76 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Taniguchi, H. et al. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71, 995–1013 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Olsen, S.R., Bortone, D.S., Adesnik, H. & Scanziani, M. Gain control by layer six in cortical circuits of vision. Nature 483, 47–52 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, Z.J. Toward a genetic dissection of cortical circuits in the mouse. Neuron 83, 1284–1302 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gonchar, Y., Wang, Q. & Burkhalter, A.H. Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Front. Neuroanat. 1, 3 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. Xu, X., Roby, K.D. & Callaway, E.M. Immunochemical characterization of inhibitory mouse cortical neurons: three chemically distinct classes of inhibitory cells. J. Comp. Neurol. 518, 389–404 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Pfeffer, C.K., Xue, M., He, M., Huang, Z.J. & Scanziani, M. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16, 1068–1076 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu, X., Roby, K.D. & Callaway, E.M. Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. J. Comp. Neurol. 499, 144–160 (2006).

    CAS  PubMed  Google Scholar 

  27. Oliva, A.A. Jr., Jiang, M., Lam, T., Smith, K.L. & Swann, J.W. Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J. Neurosci. 20, 3354–3368 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Seress, L., Abrahám, H., Hajnal, A., Lin, H. & Totterdell, S. NOS-positive local circuit neurons are exclusively axo-dendritic cells both in the neo- and archi-cortex of the rat brain. Brain Res. 1056, 183–190 (2005).

    CAS  PubMed  Google Scholar 

  29. Lee, J.E. & Jeon, C.J. Immunocytochemical localization of nitric oxide synthase–containing neurons in mouse and rabbit visual cortex and co-localization with calcium-binding proteins. Mol. Cells 19, 408–417 (2005).

    CAS  PubMed  Google Scholar 

  30. Tomioka, R. et al. Demonstration of long-range GABAergic connections distributed throughout the mouse neocortex. Eur. J. Neurosci. 21, 1587–1600 (2005).

    PubMed  Google Scholar 

  31. Gerashchenko, D. et al. Identification of a population of sleep-active cerebral cortex neurons. Proc. Natl. Acad. Sci. USA 105, 10227–10232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Taniguchi, H., Lu, J. & Huang, Z.J. The spatial and temporal origin of chandelier cells in mouse neocortex. Science 339, 70–74 (2013).

    CAS  PubMed  Google Scholar 

  33. Dehorter, N. et al. Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. Science 349, 1216–1220 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. von Engelhardt, J., Eliava, M., Meyer, A.H., Rozov, A. & Monyer, H. Functional characterization of intrinsic cholinergic interneurons in the cortex. J. Neurosci. 27, 5633–5642 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Molyneaux, B.J., Arlotta, P., Menezes, J.R. & Macklis, J.D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427–437 (2007).

    CAS  PubMed  Google Scholar 

  36. Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483–496 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sommer, B. et al. Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585 (1990).

    CAS  PubMed  Google Scholar 

  38. Vélez-Fort, M. et al. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83, 1431–1443 (2014).

    PubMed  PubMed Central  Google Scholar 

  39. Bortone, D.S., Olsen, S.R. & Scanziani, M. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron 82, 474–485 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kawaguchi, Y. Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex. J. Neurosci. 15, 2638–2655 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hestrin, S. & Armstrong, W.E. Morphology and physiology of cortical neurons in layer I. J. Neurosci. 16, 5290–5300 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Povysheva, N.V. et al. Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. J. Neurophysiol. 97, 1030–1039 (2007).

    CAS  PubMed  Google Scholar 

  43. Chu, Z., Galarreta, M. & Hestrin, S. Synaptic interactions of late-spiking neocortical neurons in layer 1. J. Neurosci. 23, 96–102 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Simon, A., Oláh, S., Molnár, G., Szabadics, J. & Tamás, G. Gap-junctional coupling between neurogliaform cells and various interneuron types in the neocortex. J. Neurosci. 25, 6278–6285 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Karayannis, T. et al. Slow GABA transient and receptor desensitization shape synaptic responses evoked by hippocampal neurogliaform cells. J. Neurosci. 30, 9898–9909 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawaguchi, Y. & Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb. Cortex 7, 476–486 (1997).

    CAS  PubMed  Google Scholar 

  47. Muralidhar, S., Wang, Y. & Markram, H. Synaptic and cellular organization of layer 1 of the developing rat somatosensory cortex. Front. Neuroanat. 7, 52 (2013).

    PubMed  Google Scholar 

  48. Herculano-Houzel, S., Watson, C. & Paxinos, G. Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitatively different cortical zones. Front. Neuroanat. 7, 35 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. DeFelipe, J. Cortical interneurons: from Cajal to 2001. Prog. Brain Res. 136, 215–238 (2002).

    PubMed  Google Scholar 

  50. Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rossi, J. et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab. 13, 195–204 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gerfen, C.R., Paletzki, R. & Heintz, N. GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80, 1368–1383 (2013).

    CAS  PubMed  Google Scholar 

  53. Franco, S.J. et al. Fate-restricted neural progenitors in the mammalian cerebral cortex. Science 337, 746–749 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dhillon, H. et al. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49, 191–203 (2006).

    CAS  PubMed  Google Scholar 

  55. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    PubMed  PubMed Central  Google Scholar 

  57. Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    CAS  PubMed  Google Scholar 

  58. Vong, L. et al. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71, 142–154 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Tong, Q., Ye, C.P., Jones, J.E., Elmquist, J.K. & Lowell, B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci. 11, 998–1000 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Raymond, C.S. & Soriano, P. High-efficiency FLP and PhiC31 site-specific recombination in mammalian cells. PLoS One 2, e162 (2007).

    PubMed  PubMed Central  Google Scholar 

  61. Sando, R. III et al. Inducible control of gene expression with destabilized Cre. Nat. Methods 10, 1085–1088 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hnasko, T.S. et al. Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proc. Natl. Acad. Sci. USA 103, 8858–8863 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Harris, J.A., Oh, S.W. & Zeng, H. Adeno-associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and cre driver mice. Curr. Protoc. Neurosci. Chapter 1, Unit 1.20.1–18 (2012).

  64. Franklin, K.B.J.P.G. Mouse Brain in Stereotaxic Coordinates (Academic Press, 2008).

  65. Hempel, C.M., Sugino, K. & Nelson, S.B. A manual method for the purification of fluorescently labeled neurons from the mammalian brain. Nat. Protoc. 2, 2924–2929 (2007).

    CAS  PubMed  Google Scholar 

  66. Ramsköld, D. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 30, 777–782 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Shalek, A.K. et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510, 363–369 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Treutlein, B. et al. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509, 371–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li, B. & Dewey, C.N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Brennecke, P. et al. Accounting for technical noise in single-cell RNA-seq experiments. Nat. Methods 10, 1093–1095 (2013).

    CAS  PubMed  Google Scholar 

  72. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).

    PubMed  PubMed Central  Google Scholar 

  74. Ritchie, M.E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Katz, Y., Wang, E.T., Airoldi, E.M. & Burge, C.B. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7, 1009–1015 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Thompson, C.L. et al. Genomic anatomy of the hippocampus. Neuron 60, 1010–1021 (2008).

    CAS  PubMed  Google Scholar 

  77. Peng, H., Ruan, Z., Long, F., Simpson, J.H. & Myers, E.W. V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat. Biotechnol. 28, 348–353 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Hu, H., Cavendish, J.Z. & Agmon, A. Not all that glitters is gold: off-target recombination in the somatostatin-IRES-Cre mouse line labels a subset of fast-spiking interneurons. Front. Neural Circuits 7, 195 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Rossier, J. et al. Cortical fast-spiking parvalbumin interneurons enwrapped in the perineuronal net express the metallopeptidases Adamts8, Adamts15 and Neprilysin. Mol. Psychiatry 20, 154–161 (2015).

    CAS  PubMed  Google Scholar 

  80. Nikkari, S.T., Järveläinen, H.T., Wight, T.N., Ferguson, M. & Clowes, A.W. Smooth muscle cell expression of extracellular matrix genes after arterial injury. Am. J. Pathol. 144, 1348–1356 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2009).

Download references

Acknowledgements

We would like to thank M. Chillon Rodrigues (Universitat Autònoma de Barcelona) for providing CAV-Cre, S. Mihalas for advice on data analysis, H. Gu, M. Mills, H. Gill and K. Hadley for technical assistance, C. Ye and A. Kaykas for help with the next generation sequencing, and the Department of In vivo Sciences, especially R. Larsen, L. Pearson and J. Harrington for mouse husbandry. We thank J. Waters and E. Lein for comments on the manuscript. The authors thank the Allen Institute founders, Paul G. Allen and Jody Allen, for their vision, encouragement and support. This work was funded by the Allen Institute for Brain Science, and by US National Institutes of Health grants R01EY023173 and U01MH105982 to H.Z.

Author information

Authors and Affiliations

Authors

Contributions

B.T. and H.Z. designed and supervised the study. T.N.N., T.K.K. and B.T. performed single-cell RNA-seq. V.M. and Z.Y. performed transcriptome data analysis with contributions from L.T.G., T.N.N., B.T., T.K.K., C.L. and M.H. T.N.N. performed stereotaxic injections. T.J. performed electrophysiology and associated data analysis. T.N.N., T.K.K. and B.T. performed single-cell isolation with contributions from B.L., N.S. and S.P. S.A.S. performed imaging of biocytin-filled cells and morphological reconstructions. D.B., J.G., K.S. and A.B. performed qRT-PCR and RNA DFISH in collaboration with T.N.N. and B.T. L.M. generated transgenic mice. T.D. designed the online scientific vignette in collaboration with B.T. and V.M. S.M.S. provided program management support. L.G., T.N., V.M. and B.T. prepared the figures. B.T., V.M., H.Z. and C.K. wrote the manuscript in consultation with all authors.

Corresponding author

Correspondence to Bosiljka Tasic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 (PDF 33300 kb)

Supplementary Methods Checklist (PDF 570 kb)

Supplementary Table 1: Transgenic driver lines.

(XLSX 22 kb)

Supplementary Table 2: Transgenic reporter lines.

(XLSX 18 kb)

Supplementary Table 3: Single cell samples.

(XLSX 237 kb)

Supplementary Table 4: Cre line and cell type relationships.

The percentage of cell types detected in each Cre line/dissection combination separated by core and intermediate cells. These data were used to generate graphical representation in Fig. 2b (XLSX 27 kb)

Supplementary Table 5: Evaluation of enrichment of interneuron types in upper or lower cortical layers using the hypergeometric test.

For details on statistics methodology see Methods. Note that lack of statistically significant enrichment does not necessarily indicate that there is no enrichment, as our sampling did not allow comprehensive evaluation of spatial enrichment for all types. We do not claim lower layer-enrichment for the Pvalb-Wt1 type because we obtained statistical significance only in one of the two examined recombinase lines. Additional information on spatial enrichment for some of these types can be obtained by examination of cell-type-specific markers by RNA ISH. (XLSX 15 kb)

Supplementary Table 6: Marker genes for transcriptomic cell types.

The table also contains an earlier version of the cell type nomenclature used in the original release of the online scientific vignette. (XLSX 15 kb)

Supplementary Table 7: Transcriptomic cell types: correspondence to literature

(XLSX 15 kb)

Supplementary Table 8: Differentially processed exons among cell types.

(XLSX 117 kb)

Supplementary Table 9: Evaluation of correspondence between RNA-seq and Allen Brain Atlas chromogenic RNA ISH data.

Out of 228 genes examined, 72% show agreement between single cell RNA-seq and Allen Brain Atlas data. For most of the other genes, the disagreement is due to the absence of signal in the Allen Brain Atlas ISH (17%). Small numbers of genes display apparently ubiquitous signal in VISp by ISH (2%), specificity of the signal that is difficult to interpret (2%), or the ISH pattern that, in fact, disagrees with RNA-seq (2%). For about 4% of the genes, the data is not available in the Allen Brain Atlas (XLSX 31 kb)

Supplementary Table 10: Cluster identities after subsampling of single cell data.

Cluster identities obtained using the full depth sequencing data (median of ~4.4 million mapped reads or ~8.7 million total reads) are compared to cluster identities obtained when data from each cell were subsampled to 100,000 and 1,000,000 mapped reads per cell. We detect fewer clusters with decreasing single cell sequencing sample depth. (XLSX 13 kb)

Supplementary Table 11: Genetic background estimate for all animals used in the study.

In our experimental animals, the percent of C57BL/6J genetic background ranges from 75% to 100% with the average of ~96%. In cases where the original ancestor we obtained was on mixed background, we adopted a conservative estimate of 0% C57BL/6J in that ancestor. (XLSX 13 kb)

Supplementary Table 12: Consequences of cluster validation parameter change on single cell classification.

Cluster identity assignment for each cell is listed for our default parameters (20 genes, p < 0.01), and after changes in these parameters: decrease or increase in the number of genes to 10, and 50, respectively, and change in the p value to p < 0.05. With parameter change, on average, ~3% of the cells change cluster identity (from one core to another core, from one core to intermediate connecting two different cores, or from intermediate connecting two cores to an intermediate connecting two different cores or becoming a third core), while ~18% change from core to intermediate and vice versa (but stay within same core/intermediate identity combination). However, the total number of core clusters is preserved for all parameter changes. (XLSX 101 kb)

Supplementary Table 13: Probes for DFISH.

(XLSX 13 kb)

Supplementary Table 14: Quantitative RT-PCR assays.

(XLSX 21 kb)

Supplementary Software

Contains the code for an iteration of the PCA and WGCNA-based clustering methods, the cluster membership validation algorithm, as well as the differential gene expression algorithm. (ZIP 603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasic, B., Menon, V., Nguyen, T. et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19, 335–346 (2016). https://doi.org/10.1038/nn.4216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.4216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing