Abstract
Antiferromagnets can encode information in their ordered magnetic structure, providing the basis for future spintronic devices1,2,3. The control and understanding of antiferromagnetic domain walls, which are the interfaces between domains with differing order parameter orientations, are key ingredients for advancing antiferromagnetic spintronic technologies. However, studies of the intrinsic mechanics of individual antiferromagnetic domain walls are difficult because they require sufficiently pure materials and suitable experimental approaches to address domain walls on the nanoscale. Here we nucleate isolated 180° domain walls in a single crystal of Cr2O3, a prototypical collinear magnetoelectric antiferromagnet, and study their interaction with topographic features fabricated on the sample. We demonstrate domain wall manipulation through the resulting engineered energy landscape and show that the observed interaction is governed by the surface energy of the domain wall. We propose a topographically defined memory architecture based on antiferromagnetic domain walls. Our results advance the understanding of domain wall mechanics in antiferromagnets.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Source data are provided with this paper. All data shown are available from Zenodo at https://doi.org/10.5281/zenodo.394199441.
Code availability
The spin lattice simulation software40 used in this paper is available at http://slasi.knu.ua.
Change history
02 March 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41567-021-01205-3
References
MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098â3114 (2011).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231â241 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367â374 (2014).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587â590 (2016).
Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).
Song, C. et al. How to manipulate magnetic states of antiferromagnets. Nanotechnology 29, 112001 (2018).
Fiebig, M., Fröhlich, D., Sluyterman, G. v. L. & Pisarev, R. V. Domain topography of antiferromagnetic Cr2O3 by second-harmonic generation. Appl. Phys. Lett. 66, 2906â2908 (1995).
Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures Ch. 3 (Springer, 1998).
Weber, N. B., Ohldag, H., Gomonaj, H. & Hillebrecht, F. U. Magnetostrictive domain walls in antiferromagnetic NiO. Phys. Rev. Lett. 91, 237205 (2003).
Kummamuru, R. K. & Soh, Y.-A. Electrical effects of spin density wave quantization and magnetic domain walls in chromium. Nature 452, 859â863 (2008).
Jaramillo, R. et al. Microscopic and macroscopic signatures of antiferromagnetic domain walls. Phys. Rev. Lett. 98, 117206 (2007).
Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190â194 (2008).
Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688â1692 (2005).
Brown, C. Magnetoelectric Domains in Single Crystal Chromium Oxide. PhD thesis, Imperial College (1969).
He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579â585 (2010).
Belashchenko, K. D. Equilibrium magnetization at the boundary of a magnetoelectric antiferromagnet. Phys. Rev. Lett. 105, 147204 (2010).
Kosub, T., Kopte, M., Radu, F., Schmidt, O. G. & Makarov, D. All-electric access to the magnetic-field-invariant magnetization of antiferromagnets. Phys. Rev. Lett. 115, 097201 (2015).
Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 56503 (2014).
Bode, M. et al. Atomic spin structure of antiferromagnetic domain walls. Nat. Mater. 5, 477â481 (2006).
Appel, P. et al. Nanomagnetism of magnetoelectric granular thin-film antiferromagnets. Nano Lett. 19, 1682â1687 (2019).
Cheong, S.-W., Fiebig, M., Wu, W., Chapon, L. & Kiryukhin, V. Seeing is believing: visualization of antiferromagnetic domains. npj Quantum Mater. 5, 3 (2020).
Tveten, E. G., Müller, T., Linder, J. & Brataas, A. Intrinsic magnetization of antiferromagnetic textures. Phys. Rev. B 93, 104408 (2016).
Brown, P. J., Forsyth, J. B., Lelièvre-Berna, E. & Tasset, F. Determination of the magnetization distribution in Cr2O3 using spherical neutron polarimetry. J. Phys. Condens. Matter 14, 1957â1966 (2002).
Wornle, M. S. et al. Structure of antiferromagnetic domain walls in single-crystal Cr2O3. Preprint at https://arxiv.org/abs/2009.09015 (2020).
Shi, S., Wysocki, A. L. & Belashchenko, K. D. Magnetism of chromia from first-principles calculations. Phys. Rev. B 79, 104404 (2009).
Pylypovskyi, O. V. & Sheka, D. D. SLaSi: a spin-lattice simulation tool. In Book of Abstracts of the 11th EUROPT Workshop on Advances in Continuous Optimization 11 (University of Florence, 2013).
Tetienne, J.-P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366â1369 (2014).
Ashida, T. et al. Isothermal electric switching of magnetization in Cr2O3/Co thin film system. Appl. Phys. Lett. 106, 132407 (2015).
Lemerle, S. et al. Domain wall creep in an Ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849â852 (1998).
Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).
Ferré, J. et al. Universal magnetic domain wall dynamics in the presence of weak disorder. C. R. Phys. 14, 651â666 (2013).
Flebus, B., Ochoa, H., Upadhyaya, P. & Tserkovnyak, Y. Proposal for dynamic imaging of antiferromagnetic domain wall via quantum-impurity relaxometry. Phys. Rev. B 98, 180409 (2018).
Hedrich, N., Rohner, D., Batzer, M., Maletinsky, P. & Shields, B. J. Parabolic diamond scanning probes for single-spin magnetic field imaging. Phys. Rev. Appl. 14, 064007 (2020).
Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215â219 (2013).
Schoenfeld, R. S. & Harneit, W. Real time magnetic field sensing and imaging using a single spin in diamond. Phys. Rev. Lett. 106, 030802 (2011).
Tetienne, J.-P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).
Belashchenko, K. D., Tchernyshyov, O., Kovalev, A. A. & Tretiakov, O. A. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory. Appl. Phys. Lett. 108, 132403 (2016).
Mitsumata, C. & Sakuma, A. Generalized model of antiferromagnetic domain wall. IEEE Trans. Magn. 47, 3501â3504 (2011).
SLaSi spin-lattice simulations package version 1.0 (RITM group, 2020); http://slasi.knu.ua
Hedrich, N. et al. Replication data for: Nanoscale mechanics of antiferromagnetic domain walls. Zenodo https://doi.org/10.5281/zenodo.3941994 (2020).
Acknowledgements
We thank O. Gomonay and S. A. DÃaz for fruitful discussions and M. Fiebig and M. Giraldo for optical characterization of our Cr2O3 samples at an early stage of the experiment. We also thank M. Kasperczyk and P. Amrein for their help with efficient implementations of the MetropolisâHastings algorithm, A. Kákay at the Helmholtz-Zentrum Dresden-Rossendorf for providing us with computation time for micromagnetics, and D. Broadway and L. Thiel for valuable input on figures. Finally, we thank A. V. Tomilo at the Taras Shevchenko National University of Kyiv for his help with the spin-lattice simulations as well as for his very helpful insight. We gratefully acknowledge financial support through the National Centre of Competence in Research, Quantum Science and Technology, a competence centre funded by the Swiss National Science Foundation through the Swiss Nanoscience Institute, and support by the Future and Emerging Technologies Open flagship ASTERIQS project of the European Union (grant no. 820394), Swiss National Science Foundation (grant no. 188521), German Research Foundation (projects MA 5144/22â1, MC 9/22-1 and MA 5144/24â1) and Taras Shevchenko National University of Kyiv (project no. 19BF052â01).
Author information
Authors and Affiliations
Contributions
P.M., D.M., T.K., N.H. and B.J.S. conceived the experiment. N.H., B.J.S. and K.W. performed the NV magnetometry experiments and analysed the resulting data. N.H., K.W. and B.J.S. performed the nanofabrication. O.V.P. and D.D.S. performed the numerical simulations and analytical calculations. All authors contributed to the writing of the paper.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review informationâNature Physics thanks Christian Binek, Chunhui Du and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Sections IâX and Figs. 1â10.
Source data
Source Data Fig. 1
Numerical data for generating the line cut in Fig. 1d.
Source Data Fig. 2
Numerical data (measured, simulated and calculated) for generating the plot in Fig. 2b.
Source Data Fig. 3
Numerical data from simulations for reproducing the line plot in Fig. 3c.
Rights and permissions
About this article
Cite this article
Hedrich, N., Wagner, K., Pylypovskyi, O.V. et al. Nanoscale mechanics of antiferromagnetic domain walls. Nat. Phys. 17, 574â577 (2021). https://doi.org/10.1038/s41567-020-01157-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41567-020-01157-0
This article is cited by
-
Nanoscale diamond quantum sensors for many-body physics
Nature Reviews Physics (2024)
-
Electrical switching of the perpendicular Néel order in a collinear antiferromagnet
Nature Electronics (2024)
-
Observation of plaid-like spin splitting in a noncoplanar antiferromagnet
Nature (2024)
-
Topological surface magnetism and Néel vector control in a magnetoelectric antiferromagnet
npj Quantum Materials (2023)
-
Revealing emergent magnetic charge in an antiferromagnet with diamond quantum magnetometry
Nature Materials (2023)