Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nanoscale mechanics of antiferromagnetic domain walls

A Publisher Correction to this article was published on 02 March 2021

This article has been updated

Abstract

Antiferromagnets can encode information in their ordered magnetic structure, providing the basis for future spintronic devices1,2,3. The control and understanding of antiferromagnetic domain walls, which are the interfaces between domains with differing order parameter orientations, are key ingredients for advancing antiferromagnetic spintronic technologies. However, studies of the intrinsic mechanics of individual antiferromagnetic domain walls are difficult because they require sufficiently pure materials and suitable experimental approaches to address domain walls on the nanoscale. Here we nucleate isolated 180° domain walls in a single crystal of Cr2O3, a prototypical collinear magnetoelectric antiferromagnet, and study their interaction with topographic features fabricated on the sample. We demonstrate domain wall manipulation through the resulting engineered energy landscape and show that the observed interaction is governed by the surface energy of the domain wall. We propose a topographically defined memory architecture based on antiferromagnetic domain walls. Our results advance the understanding of domain wall mechanics in antiferromagnets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample structure and domain wall imaging on single-crystal antiferromagnetic Cr2O3.
Fig. 2: Mechanics of an antiferromagnetic domain wall.
Fig. 3: Engineered pinning and controlled manipulation of antiferromagnetic domain walls.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All data shown are available from Zenodo at https://doi.org/10.5281/zenodo.394199441.

Code availability

The spin lattice simulation software40 used in this paper is available at http://slasi.knu.ua.

Change history

References

  1. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011).

    Article  ADS  Google Scholar 

  2. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  ADS  Google Scholar 

  3. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  4. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014).

    Article  ADS  Google Scholar 

  5. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  ADS  Google Scholar 

  6. Kosub, T. et al. Purely antiferromagnetic magnetoelectric random access memory. Nat. Commun. 8, 13985 (2017).

    Article  ADS  Google Scholar 

  7. Song, C. et al. How to manipulate magnetic states of antiferromagnets. Nanotechnology 29, 112001 (2018).

    Article  ADS  Google Scholar 

  8. Fiebig, M., Fröhlich, D., Sluyterman, G. v. L. & Pisarev, R. V. Domain topography of antiferromagnetic Cr2O3 by second-harmonic generation. Appl. Phys. Lett. 66, 2906–2908 (1995).

    Article  ADS  Google Scholar 

  9. Hubert, A. & Schäfer, R. Magnetic Domains: The Analysis of Magnetic Microstructures Ch. 3 (Springer, 1998).

  10. Weber, N. B., Ohldag, H., Gomonaj, H. & Hillebrecht, F. U. Magnetostrictive domain walls in antiferromagnetic NiO. Phys. Rev. Lett. 91, 237205 (2003).

    Article  ADS  Google Scholar 

  11. Kummamuru, R. K. & Soh, Y.-A. Electrical effects of spin density wave quantization and magnetic domain walls in chromium. Nature 452, 859–863 (2008).

    Article  ADS  Google Scholar 

  12. Jaramillo, R. et al. Microscopic and macroscopic signatures of antiferromagnetic domain walls. Phys. Rev. Lett. 98, 117206 (2007).

    Article  ADS  Google Scholar 

  13. Parkin, S. S. P., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  ADS  Google Scholar 

  14. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  ADS  Google Scholar 

  15. Brown, C. Magnetoelectric Domains in Single Crystal Chromium Oxide. PhD thesis, Imperial College (1969).

  16. He, X. et al. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9, 579–585 (2010).

    Article  ADS  Google Scholar 

  17. Belashchenko, K. D. Equilibrium magnetization at the boundary of a magnetoelectric antiferromagnet. Phys. Rev. Lett. 105, 147204 (2010).

    Article  ADS  Google Scholar 

  18. Kosub, T., Kopte, M., Radu, F., Schmidt, O. G. & Makarov, D. All-electric access to the magnetic-field-invariant magnetization of antiferromagnets. Phys. Rev. Lett. 115, 097201 (2015).

    Article  ADS  Google Scholar 

  19. Rondin, L. et al. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77, 56503 (2014).

    Article  Google Scholar 

  20. Bode, M. et al. Atomic spin structure of antiferromagnetic domain walls. Nat. Mater. 5, 477–481 (2006).

    Article  ADS  Google Scholar 

  21. Appel, P. et al. Nanomagnetism of magnetoelectric granular thin-film antiferromagnets. Nano Lett. 19, 1682–1687 (2019).

    Article  ADS  Google Scholar 

  22. Cheong, S.-W., Fiebig, M., Wu, W., Chapon, L. & Kiryukhin, V. Seeing is believing: visualization of antiferromagnetic domains. npj Quantum Mater. 5, 3 (2020).

    Article  ADS  Google Scholar 

  23. Tveten, E. G., Müller, T., Linder, J. & Brataas, A. Intrinsic magnetization of antiferromagnetic textures. Phys. Rev. B 93, 104408 (2016).

    Article  ADS  Google Scholar 

  24. Brown, P. J., Forsyth, J. B., Lelièvre-Berna, E. & Tasset, F. Determination of the magnetization distribution in Cr2O3 using spherical neutron polarimetry. J. Phys. Condens. Matter 14, 1957–1966 (2002).

    Article  ADS  Google Scholar 

  25. Wornle, M. S. et al. Structure of antiferromagnetic domain walls in single-crystal Cr2O3. Preprint at https://arxiv.org/abs/2009.09015 (2020).

  26. Shi, S., Wysocki, A. L. & Belashchenko, K. D. Magnetism of chromia from first-principles calculations. Phys. Rev. B 79, 104404 (2009).

    Article  ADS  Google Scholar 

  27. Pylypovskyi, O. V. & Sheka, D. D. SLaSi: a spin-lattice simulation tool. In Book of Abstracts of the 11th EUROPT Workshop on Advances in Continuous Optimization 11 (University of Florence, 2013).

  28. Tetienne, J.-P. et al. Nanoscale imaging and control of domain-wall hopping with a nitrogen-vacancy center microscope. Science 344, 1366–1369 (2014).

    Article  ADS  Google Scholar 

  29. Ashida, T. et al. Isothermal electric switching of magnetization in Cr2O3/Co thin film system. Appl. Phys. Lett. 106, 132407 (2015).

    Article  ADS  Google Scholar 

  30. Lemerle, S. et al. Domain wall creep in an Ising ultrathin magnetic film. Phys. Rev. Lett. 80, 849–852 (1998).

    Article  ADS  Google Scholar 

  31. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  32. Ferré, J. et al. Universal magnetic domain wall dynamics in the presence of weak disorder. C. R. Phys. 14, 651–666 (2013).

    Article  ADS  Google Scholar 

  33. Flebus, B., Ochoa, H., Upadhyaya, P. & Tserkovnyak, Y. Proposal for dynamic imaging of antiferromagnetic domain wall via quantum-impurity relaxometry. Phys. Rev. B 98, 180409 (2018).

    Article  ADS  Google Scholar 

  34. Hedrich, N., Rohner, D., Batzer, M., Maletinsky, P. & Shields, B. J. Parabolic diamond scanning probes for single-spin magnetic field imaging. Phys. Rev. Appl. 14, 064007 (2020).

    Article  ADS  Google Scholar 

  35. Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9, 215–219 (2013).

    Article  Google Scholar 

  36. Schoenfeld, R. S. & Harneit, W. Real time magnetic field sensing and imaging using a single spin in diamond. Phys. Rev. Lett. 106, 030802 (2011).

    Article  ADS  Google Scholar 

  37. Tetienne, J.-P. et al. The nature of domain walls in ultrathin ferromagnets revealed by scanning nanomagnetometry. Nat. Commun. 6, 6733 (2015).

    Article  ADS  Google Scholar 

  38. Belashchenko, K. D., Tchernyshyov, O., Kovalev, A. A. & Tretiakov, O. A. Magnetoelectric domain wall dynamics and its implications for magnetoelectric memory. Appl. Phys. Lett. 108, 132403 (2016).

    Article  ADS  Google Scholar 

  39. Mitsumata, C. & Sakuma, A. Generalized model of antiferromagnetic domain wall. IEEE Trans. Magn. 47, 3501–3504 (2011).

    Article  ADS  Google Scholar 

  40. SLaSi spin-lattice simulations package version 1.0 (RITM group, 2020); http://slasi.knu.ua

  41. Hedrich, N. et al. Replication data for: Nanoscale mechanics of antiferromagnetic domain walls. Zenodo https://doi.org/10.5281/zenodo.3941994 (2020).

Download references

Acknowledgements

We thank O. Gomonay and S. A. Díaz for fruitful discussions and M. Fiebig and M. Giraldo for optical characterization of our Cr2O3 samples at an early stage of the experiment. We also thank M. Kasperczyk and P. Amrein for their help with efficient implementations of the Metropolis–Hastings algorithm, A. Kákay at the Helmholtz-Zentrum Dresden-Rossendorf for providing us with computation time for micromagnetics, and D. Broadway and L. Thiel for valuable input on figures. Finally, we thank A. V. Tomilo at the Taras Shevchenko National University of Kyiv for his help with the spin-lattice simulations as well as for his very helpful insight. We gratefully acknowledge financial support through the National Centre of Competence in Research, Quantum Science and Technology, a competence centre funded by the Swiss National Science Foundation through the Swiss Nanoscience Institute, and support by the Future and Emerging Technologies Open flagship ASTERIQS project of the European Union (grant no. 820394), Swiss National Science Foundation (grant no. 188521), German Research Foundation (projects MA 5144/22−1, MC 9/22-1 and MA 5144/24−1) and Taras Shevchenko National University of Kyiv (project no. 19BF052−01).

Author information

Authors and Affiliations

Authors

Contributions

P.M., D.M., T.K., N.H. and B.J.S. conceived the experiment. N.H., B.J.S. and K.W. performed the NV magnetometry experiments and analysed the resulting data. N.H., K.W. and B.J.S. performed the nanofabrication. O.V.P. and D.D.S. performed the numerical simulations and analytical calculations. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Denys Makarov or Patrick Maletinsky.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Christian Binek, Chunhui Du and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–X and Figs. 1–10.

Source data

Source Data Fig. 1

Numerical data for generating the line cut in Fig. 1d.

Source Data Fig. 2

Numerical data (measured, simulated and calculated) for generating the plot in Fig. 2b.

Source Data Fig. 3

Numerical data from simulations for reproducing the line plot in Fig. 3c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedrich, N., Wagner, K., Pylypovskyi, O.V. et al. Nanoscale mechanics of antiferromagnetic domain walls. Nat. Phys. 17, 574–577 (2021). https://doi.org/10.1038/s41567-020-01157-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-020-01157-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing