Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantum critical dynamics in a 5,000-qubit programmable spin glass

Abstract

Experiments on disordered alloys1,2,3 suggest that spin glasses can be brought into low-energy states faster by annealing quantum fluctuations than by conventional thermal annealing. Owing to the importance of spin glasses as a paradigmatic computational testbed, reproducing this phenomenon in a programmable system has remained a central challenge in quantum optimization4,5,6,7,8,9,10,11,12,13. Here we achieve this goal by realizing quantum-critical spin-glass dynamics on thousands of qubits with a superconducting quantum annealer. We first demonstrate quantitative agreement between quantum annealing and time evolution of the Schrödinger equation in small spin glasses. We then measure dynamics in three-dimensional spin glasses on thousands of qubits, for which classical simulation of many-body quantum dynamics is intractable. We extract critical exponents that clearly distinguish quantum annealing from the slower stochastic dynamics of analogous Monte Carlo algorithms, providing both theoretical and experimental support for large-scale quantum simulation and a scaling advantage in energy optimization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Programmable quantum spin glasses.
Fig. 2: Coherent Schrödinger dynamics.
Fig. 3: Dynamic finite-size scaling in 3D spin glasses.
Fig. 4: Critical scaling of final residual energy.

Similar content being viewed by others

Data availability

Data supporting the findings are available in the Zenodo online repository https://doi.org/10.5281/zenodo.7640779.

Code availability

An open-source version of the SQA code used in this work is available at https://github.com/dwavesystems/dwave-pimc.

References

  1. Brooke, J., Bitko, D., Rosenbaum, T. F. & Aeppli, G. Quantum annealing of a disordered magnet. Science 284, 779–781 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Aeppli, G. & Rosenbaum, T. F. in Quantum Annealing and Related Optimization Methods (eds Das, A. & Chakrabarti, B.) Ch. 6 (Springer, 2005).

  3. Das, A. & Chakrabarti, B. K. Colloquium: quantum annealing and analog quantum computation. Rev. Mod. Phys. 80, 1061–1081 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse Ising model. Phys. Rev. E 58, 5355 (1998).

    Article  ADS  CAS  Google Scholar 

  5. Santoro, G. E., Martonák, R., Tosatti, E. & Car, R. Theory of quantum annealing of an Ising spin glass. Science 295, 2427–2430 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Harris, R. et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor. Phys. Rev. B 82, 024511 (2010).

    Article  ADS  Google Scholar 

  7. Rønnow, T. F. et al. Defining and detecting quantum speedup. Science 345, 420–424 (2014).

    Article  ADS  PubMed  Google Scholar 

  8. Katzgraber, H. G., Hamze, F. & Andrist, R. S. Glassy chimeras could be blind to quantum speedup: designing better benchmarks for quantum annealing machines. Phys. Rev. X 4, 021008 (2014).

    Google Scholar 

  9. Hen, I. et al. Probing for quantum speedup in spin-glass problems with planted solutions. Phys. Rev. A 92, 042325 (2015).

    Article  ADS  Google Scholar 

  10. Heim, B., Rønnow, T. F., Isakov, S. V. & Troyer, M. Quantum versus classical annealing of Ising spin glasses. Science 348, 215–217 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  11. Boixo, S. et al. Computational multiqubit tunnelling in programmable quantum annealers. Nat. Commun. 7, 10327 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Denchev, V. S. et al. What is the computational value of finite-range tunneling? Phys. Rev. X 6, 031015 (2016).

    Google Scholar 

  13. Albash, T. & Lidar, D. A. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8, 031016 (2018).

    CAS  Google Scholar 

  14. Mezard M. & Montanari, A. Information, Physics, and Computation (Oxford Univ. Press, 2009).

  15. Stein, D. L. & Newman, C. M. Spin Glasses and Complexity (Princeton Univ. Press, 2013).

  16. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  17. Tan, C. M. (ed.) Simulated Annealing (InTech, 2008).

  18. Albash, T. & Lidar, D. A. Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  19. Arnab Das, A. & Chakrabarti, B. (eds) Quantum Annealing and Related Optimization Methods (Springer, 2005).

  20. Feynman, R. P. Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982).

    Article  MathSciNet  Google Scholar 

  21. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lechner, W., Hauke, P. & Zoller, P. A quantum annealing architecture with all-to-all connectivity from local interactions. Sci. Adv. 1, e15008 (2015).

    Article  Google Scholar 

  23. Weber, S. J. et al. Coherent coupled qubits for quantum annealing. Phys. Rev. Appl. 8, 014004 (2017).

    Article  ADS  Google Scholar 

  24. Novikov, S. et al. Exploring more-coherent quantum annealing. In 2018 IEEE International Conference on Rebooting Computing (ICRC) 1–7 (IEEE, 2018).

  25. Hauke, P., Katzgraber, H. G., Lechner, W., Nishimori, H. & Oliver, W. D. Perspectives of quantum annealing: methods and implementations. Rep. Prog. Phys. 83, 054401 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Blatt, R. & Roos, C. F. Quantum simulations with trapped ions. Nat. Phys. 8, 277–284 (2012).

    Article  CAS  Google Scholar 

  27. Monroe, C. et al. Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys. 93, 025001 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Scholl, P. et al. Programmable quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 595, 233–238 (2020).

    Article  ADS  Google Scholar 

  30. Ebadi, S. et al. Quantum optimization of maximum independent set using Rydberg atom arrays. Science 376, 1209–1215 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Harris, R. et al. Phase transitions in a programmable quantum spin glass simulator. Science 361, 162–165 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  32. King, A. D. et al. Coherent quantum annealing in a programmable 2,000 qubit Ising chain. Nat. Phys. 18, 1324–1328 (2022).

    Article  CAS  Google Scholar 

  33. Suzuki, M. Relationship between d-dimensional quantal spin systems and (d + 1)-dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Prog. Theor. Phys. 56, 1454–1469 (1976).

    Article  ADS  MATH  Google Scholar 

  34. Isakov, S. V. et al. Understanding quantum tunneling through quantum Monte Carlo simulations. Phys. Rev. Lett. 117, 180402 (2016).

    Article  ADS  PubMed  Google Scholar 

  35. King, A. D. et al. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 456–460 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Nishimura, K., Nishimori, H. & Katzgraber, H. G. Griffiths–McCoy singularity on the diluted chimera graph: Monte Carlo simulations and experiments on quantum hardware. Phys. Rev. A 102, 042403 (2020).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  37. Weinberg, P. et al. Scaling and diabatic effects in quantum annealing with a D-Wave device. Phys. Rev. Lett. 124, 090502 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Zhou, S., Green, D., Dahl, E. D. & Chamon, C. Experimental realization of classical \({\rho }_{E}^{{\rm{f}}}\) spin liquids in a programmable quantum device. Phys. Rev. B 104, L081107 (2021).

    Article  ADS  CAS  Google Scholar 

  39. Farhi, E. et al. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 472–475 (2001).

    Article  ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  40. Kibble, T. W. B. Topology of cosmic domains and strings. J. Phys. A Math. Gen. 9, 1387–1398 (1976).

    Article  ADS  MATH  Google Scholar 

  41. Zurek, W. H. Cosmological experiments in superfluid helium? Nature 317, 505–508 (1985).

    Article  ADS  CAS  Google Scholar 

  42. Polkovnikov, A. Universal adiabatic dynamics in the vicinity of a quantum critical point. Phys. Rev. B 72, 161201 (2005).

    Article  ADS  Google Scholar 

  43. Dziarmaga, J. Dynamics of a quantum phase transition: exact solution of the quantum Ising model. Phys. Rev. Lett. 95, 245701 (2005).

    Article  ADS  PubMed  Google Scholar 

  44. Zurek, W. H., Dorner, U. & Zoller, P. Dynamics of a quantum phase transition. Phys. Rev. Lett. 95, 105701 (2005).

    Article  ADS  PubMed  Google Scholar 

  45. Deng, S., Ortiz, G. & Viola, L. Dynamical non-ergodic scaling in continuous finite-order quantum phase transitions. Europhys. Lett. 84, 67008 (2008).

    Article  ADS  Google Scholar 

  46. De Grandi, C., Polkovnikov, A. & Sandvik, A. W. Universal nonequilibrium quantum dynamics in imaginary time. Phys. Rev. B 84, 224303 (2011).

    Article  ADS  Google Scholar 

  47. Chandran, A., Erez, A., Gubser, S. S. & Sondhi, S. L. Kibble–Zurek problem: universality and the scaling limit. Phys. Rev. B 86, 064304 (2012).

    Article  ADS  Google Scholar 

  48. Liu, C.-W., Polkovnikov, A., Sandvik, A. W. & Young, A. P. Universal dynamic scaling in three-dimensional Ising spin glasses. Phys. Rev. E 92, 022128 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  49. Miyazaki, R. & Nishimori, H. Real-space renormalization-group approach to the random transverse-field Ising model in finite dimensions. Phys. Rev. E 87, 032154(2013).

    Article  ADS  Google Scholar 

  50. Matoz-Fernandez, D. A. & Romá, F. Unconventional critical activated scaling of two-dimensional quantum spin glasses. Phys. Rev. B 94, 024201 (2016).

    Article  ADS  Google Scholar 

  51. Guo, M., Bhatt, R. N. & Huse, D. A. Quantum critical behavior of a three-dimensional Ising spin glass in a transverse magnetic field. Phys. Rev. Lett. 72, 4137–4140 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Hartmann, A. K. Ground-state behavior of the three -dimensional ±J random-bond Ising model. Phys. Rev. B 59, 3617–3623 (1999).

    Article  ADS  CAS  Google Scholar 

  53. Hasenbusch, M., Toldin, F. P., Pelissetto, A. & Vicari, E. Critical behavior of the three-dimensional ±J Ising model at the paramagnetic-ferromagnetic transition line. Phys. Rev. B 76, 094402 (2007).

    Article  ADS  Google Scholar 

  54. Hasenbusch, M., Toldin, F. P., Pelissetto, A. & Vicari, E. Magnetic-glassy multicritical behavior of the three-dimensional ±J Ising model. Phys. Rev. B 76, 184202 (2007).

    Article  ADS  Google Scholar 

  55. Nishimori, H. Boundary between the ferromagnetic and spin glass phases. J. Phys. Soc. Jpn 61, 1011–1012 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  56. Schmitt, M., Rams, M. M., Dziarmaga, J., Heyl, M. & Zurek, W. H. Quantum phase transition dynamics in the two-dimensional transverse-field Ising model. Sci. Adv. 8, eabl6850 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Harris, R. et al. Experimental demonstration of a robust and scalable flux qubit. Phys. Rev. B 81, 134510 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Young, H. Nishimori, S. Suzuki and J. Charfreitag for helpful discussions. A.W.S. was supported by the Simons Foundation under Simons Investigator Award no. 511064. Some of the numerical simulations were carried out using the Shared Computing Cluster managed by Boston University’s Research Computing Services. We thank both the technical and the non-technical staff at D-Wave, without whom this work would not be possible.

Author information

Authors and Affiliations

Authors

Contributions

A.D.K., J.R., T.L., R.H., A.Z., A.W.S. and M.H.A. conceived and designed the experiments and analysed the data. A.D.K., J.R., T.L. and A.W.S. performed the experiments and simulations. T.L., R.H., F.A., A.J.B., K.B., S.E., C.E., E.H., S.H., E.L., A.J.R.M., G.M., R.M., T.O., G.P.-L., M.R., C.R., Y.S., N.T., M.V., J.D.W., J.Y. and M.H.A. contributed to the design, fabrication, deployment and calibration of the QA system. A.D.K., J.R., R.H., A.W.S. and M.H.A. wrote the manuscript.

Corresponding authors

Correspondence to Andrew D. King, Anders W. Sandvik or Mohammad H. Amin.

Ethics declarations

Competing interests

A.W.S. declares no competing interests. All other authors have received stock options in D-Wave as current or former employees.

Peer review information

Peer review information

Nature thanks Marek Rams and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 State probabilities for 16-spin glasses.

a, We show observed probabilities for ground states and first excited states in Schrödinger evolution (ta = 14 ns), SA (ta = 200 MCS), and SQA (ta = 100 MCS) compared with experimental measurements from QA (ta = 14 ns). The three columns contain data for the three exemplary instances, with colors corresponding to those in Fig. 2. Annealing times for SA and SQA were chosen to have good agreement with Schrödinger evolution in average ground state probability. Each dynamics was run 19,200 times; dashed lines indicate the statistical floor, i.e., the probability if a state is seen exactly once. Unobserved states are represented by points below the statistical floor. b, Kullback-Leibler (KL) divergence in the probability distribution among first excited states, with QA used as a reference distribution, measures deviation between two dynamics for a given realization. Empirical CDF (proportion of 100 realizations below a given KL divergence) is shown. Data indicate that coherent quantum (Schrödinger) dynamics agrees more closely with experimental data better than does SA or SQA.

Extended Data Fig. 2 Data collapse for 3D spin glasses with JG = 1.

Best-fit exponent μ collapses U by rescaling data horizontally based on L, and r collapses ⟨q2⟩ by scaling vertically based on L, given a horizontal rescaling by L−μ.

Extended Data Fig. 3 Data collapse for 3D spin glasses with JG = 1/2.

Best-fit exponent μ collapses U by rescaling data horizontally based on L, and r collapses ⟨q2⟩ by scaling vertically based on L, given a horizontal rescaling by L−μ.

Extended Data Fig. 4 Data collapse for 3D spin glasses on simple cubic lattices.

Best-fit exponent μ collapses U by rescaling data horizontally based on L, and r collapses ⟨q2⟩ by scaling vertically based on L, given a horizontal rescaling by L−μ.

Extended Data Fig. 5 3D lattice structure in qubit connectivity graph.

\(L\times L\times (\max (L,12))\times 2\) lattices are found by heuristic search given a basic structure in which horizontal and vertical (long) couplings form two dimensions, and the interior of unit cells forms the third dimension. One dimer (thick gray line) and its six neighboring dimers are shown as thick gray lines. As in Fig. 1, purple and yellow lines represent glass couplings of ± JG and ± JG/2 respectively.

Extended Data Fig. 6 Measurement of effective QA annealing time.

Two independent measurement methods are used to estimate ta for fast anneals ( < 20 ns). First is a direct measurement using a witness qubit. Second is an extrapolative measurement that assumes a quantum KZ scaling in a 1D chain and assumes a kink density \(n\propto {t}_{a}^{-1/2}\) for ta < 20 ns. For the fastest anneals, ta deviates significantly from the values requested from the control electronics. However, the two independent measurement approaches give consistent results.

Extended Data Fig. 7 Extracting Ising model from flux-qubit model.

a, Eight-qubit gadget used to extract an effective annealing schedule in the transverse-field Ising model based on a many-body flux-qubit Hamiltonian. Dimers indicated by dashed ellipses are treated as six-level objects and combined to diagonalize a many-body Hamiltonian. b, General-purpose (nominal) annealing schedule based on single-qubit measurements, and extracted many-body effective schedule, used for Schrödinger evolution.

Extended Data Table 1 Physical qubit properties for the QA processor

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

King, A.D., Raymond, J., Lanting, T. et al. Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature 617, 61–66 (2023). https://doi.org/10.1038/s41586-023-05867-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-05867-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing