Abstract
We used the 10x Genomics Visium platform to define the spatial topography of gene expression in the six-layered human dorsolateral prefrontal cortex. We identified extensive layer-enriched expression signatures and refined associations to previous laminar markers. We overlaid our laminar expression signatures on large-scale single nucleus RNA-sequencing data, enhancing spatial annotation of expression-driven clusters. By integrating neuropsychiatric disorder gene sets, we showed differential layer-enriched expression of genes associated with schizophrenia and autism spectrum disorder, highlighting the clinical relevance of spatially defined expression. We then developed a data-driven framework to define unsupervised clusters in spatial transcriptomics data, which can be applied to other tissues or brain regions in which morphological architecture is not as well defined as cortical laminae. Last, we created a web application for the scientific community to explore these raw and summarized data to augment ongoing neuroscience and spatial transcriptomics research (http://research.libd.org/spatialLIBD).
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
Data availability
Processed data are publicly available from the Bioconductor package spatialLIBD60. The raw data are publicly available from the Globus endpoint âjhpce#HumanPilot10xâ that is also listed at http://research.libd.org/globus. The raw data provided through Globus include all the FASTQ files and raw image files. External data used in this project are detailed under snRNA-seq spatial registration as well as Clinical gene set enrichment analyses.
Code availability
The code for this project is publicly available through GitHub and archived through Zenodo. Specifically, the code is available through GitHub at https://github.com/LieberInstitute/HumanPilot (ref. 87) and https://github.com/LieberInstitute/spatialLIBD (ref. 60), both of which are described in their README.md files.
Change history
18 February 2021
A Correction to this paper has been published: https://doi.org/10.1038/s41593-021-00817-5
References
DeFelipe, J. & Fariñas, I. The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic inputs. Prog. Neurobiol. 39, 563â607 (1992).
Harris, K. D. & Shepherd, G. M. G. The neocortical circuit: themes and variations. Nat. Neurosci. 18, 170â181 (2015).
Narayanan, R. T., Udvary, D. & Oberlaender, M. Cell type-specific structural organization of the six layers in rat barrel cortex. Front. Neuroanat. 11, 91 (2017).
Radnikow, G. & Feldmeyer, D. Layer- and cell type-specific modulation of excitatory neuronal activity in the neocortex. Front. Neuroanat. 12, 1 (2018).
Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61â68 (2019).
Velmeshev, D. et al. Single-cell genomics identifies cell type-specific molecular changes in autism. Science 364, 685â689 (2019).
Darmanis, S. et al. A survey of human brain transcriptome diversity at the single cell level. Proc. Natl Acad. Sci. USA 112, 7285â7290 (2015).
Lake, B. B. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352, 1586â1590 (2016).
Lake, B. B. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 36, 70â80 (2018).
Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimerâs disease. Nature 570, 332â337 (2019).
Nowakowski, T. J. et al. Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. Science 358, 1318â1323 (2017).
Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. 50, 825â833 (2018).
Bakken, T. E. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS ONE 13, e0209648 (2018).
Sweet, R. A., Fish, K. N. & Lewis, D. A. Mapping synaptic pathology within cerebral cortical circuits in subjects with schizophrenia. Front. Hum. Neurosci. 4, 44 (2010).
Moyer, C. E., Shelton, M. A. & Sweet, R. A. Dendritic spine alterations in schizophrenia. Neurosci. Lett. 601, 46â53 (2015).
Gandal, M. J. et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 362, eaat8127 (2018).
Maynard, K. R. et al. dotdotdot: an automated approach to quantify multiplex single molecule fluorescent in situ hybridization (smFISH) images in complex tissues. Nucleic Acids Res. https://doi.org/10.1093/nar/gkaa312 (2020).
Burgess, D. J. Spatial transcriptomics coming of age. Nat. Rev. Genet. 20, 317 (2019).
Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64â69 (2017).
Jaffe, A. E. et al. Profiling gene expression in the human dentate gyrus granule cell layer reveals insights into schizophrenia and its genetic risk. Nat. Neurosci. 23, 510â519 (2020).
Dong, X. et al. Global, integrated analysis of methylomes and transcriptomes from laser capture microdissected bronchial and alveolar cells in human lung. Epigenetics 13, 264â274 (2018).
He, Z. et al. Comprehensive transcriptome analysis of neocortical layers in humans, chimpanzees and macaques. Nat. Neurosci. 20, 886â895 (2017).
StÃ¥hl, P. L. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353, 78â82 (2016).
Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463â1467 (2019).
Asp, M. et al. An organ-wide gene expression atlas of the developing human heart. Cell 179, 1647â1660.e19 (2019).
Moncada, R. et al. Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nat. Biotechnol. 38, 333â342 (2020).
Berglund, E. et al. Spatial maps of prostate cancer transcriptomes reveal an unexplored landscape of heterogeneity. Nat. Commun. 9, 2419 (2018).
Maniatis, S. et al. Spatiotemporal dynamics of molecular pathology in amyotrophic lateral sclerosis. Science 364, 89â93 (2019).
Gregory, J. M. et al. Spatial transcriptomics identifies spatially dysregulated expression of GRM3 and USP47 in amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. https://doi.org/10.1111/nan.12597 (2020).
Hafner, A.-S., Donlin-Asp, P. G., Leitch, B., Herzog, E. & Schuman, E. M. Local protein synthesis is a ubiquitous feature of neuronal pre- and postsynaptic compartments. Science 364, eaau3644 (2019).
Molyneaux, B. J., Arlotta, P., Menezes, J. R. L. & Macklis, J. D. Neuronal subtype specification in the cerebral cortex. Nat. Rev. Neurosci. 8, 427â437 (2007).
Zeng, H. et al. Large-scale cellular-resolution gene profiling in human neocortex reveals species-specific molecular signatures. Cell 149, 483â496 (2012).
Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391â399 (2012).
Birnbaum, R., Jaffe, A. E., Hyde, T. M., Kleinman, J. E. & Weinberger, D. R. Prenatal expression patterns of genes associated with neuropsychiatric disorders. Am. J. Psychiatry 171, 758â767 (2014).
Abrahams, B. S. et al. SFARI Gene 2.0: a community-driven knowledgebase for the autism spectrum disorders (ASDs). Mol. Autism 4, 36 (2013).
Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568â584.e23 (2020).
de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).
Collado-Torres, L. et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and schizophrenia. Neuron 103, 203â216.e8 (2019).
Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228â1235 (2015).
Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431â444 (2019).
Pardiñas, A. F. et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381â389 (2018).
Stahl, E. A. et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat. Genet. 51, 793â803 (2019).
Jaffe, A. E. et al. Developmental and genetic regulation of the human cortex transcriptome illuminate schizophrenia pathogenesis. Nat. Neurosci. 21, 1117â1125 (2018).
Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442â1453 (2016).
Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987â990 (2019).
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932â935 (2018).
Overly, C. C., Rieff, H. I. & Hollenbeck, P. J. Organelle motility and metabolism in axons vs dendrites of cultured hippocampal neurons. J. Cell Sci. 109, 971â980 (1996).
Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75, 762â777 (2012).
Biever, A., Donlin-Asp, P. G. & Schuman, E. M. Local translation in neuronal processes. Curr. Opin. Neurobiol. 57, 141â148 (2019).
Lipska, B. K. et al. Critical factors in gene expression in postmortem human brain: focus on studies in schizophrenia. Biol. Psychiatry 60, 650â658 (2006).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15â21 (2013).
Morgan, M., Obenchain, V., Hester, J. & Pagès, H. Summarized Experiment. Bioconductor https://doi.org/10.18129/b9.bioc.summarizedexperiment (2017).
Risso, D. Single cell experiment. Bioconductor https://doi.org/10.18129/b9.bioc.singlecellexperiment (2017).
Lun, A. T. L., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Res. 5, 2122 (2016).
McCarthy, D. J., Campbell, K. R., Lun, A. T. L. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179â1186 (2017).
van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579â2605 (2008).
McInnes, L., Healy, J., Saul, N. & GroÃberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Software 3, 861 (2018).
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Syst. 1695, 1â9 (2006).
Collado-Torres, L. LieberInstitute/spatialLIBD: spatialLIBD: initial bioconductor submission. Zenodo https://doi.org/10.5281/zenodo.3689719 (2020).
Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web application framework for R. R version 1.4.0 (2019).
Sievert, C. plotly for R. R version 4.9.2 (2018).
Rajkowska, G. & Goldman-Rakic, P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: I. Remapping of areas 9 and 46 using quantitative criteria. Cereb. Cortex 5, 307â322 (1995).
Rajkowska, G. & Goldman-Rakic, P. S. Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach coordinate system. Cereb. Cortex 5, 323â337 (1995).
Lun, A. T. L. & Marioni, J. C. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics 18, 451â464 (2017).
Kang, H. M. et al. Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat. Biotechnol. 36, 89â94 (2018).
Crowell, H. L. et al. muscat detects subpopulation-specific state transitions from multi-sample multi-condition single-cell transcriptomics data. Nat. Commun. 11, 6077 (2020).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).
Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).
Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955â958 (2017).
Lacar, B. et al. Nuclear RNA-seq of single neurons reveals molecular signatures of activation. Nat. Commun. 7, 11022 (2016).
Habib, N. et al. Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353, 925â928 (2016).
Hu, P. et al. Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-Seq. Mol. Cell 68, 1006â1015.e7 (2017).
Amezquita, R. A. et al. Orchestrating single-cell analysis with bioconductor. Nat. Methods 17, 137â145 (2020).
Lun, A. T. L. et al. EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data. Genome Biol. 20, 63 (2019).
Griffiths, J. A., Richard, A. C., Bach, K., Lun, A. T. L. & Marioni, J. C. Detection and removal of barcode swapping in single-cell RNA-seq data. Nat. Commun. 9, 2667 (2018).
Langfelder, P., Zhang, B. & with contributions from Horvath, S. dynamicTreeCut: Methods for detection of clusters in hierarchical clustering dendrograms. R version 1.63.1 (2016).
Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245â252 (2016).
Olmos-Serrano, J. L. et al. Down syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron 89, 1208â1222 (2016).
Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 50, 668â681 (2018).
Bulik-Sullivan, B. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291â295 (2015).
Rizzardi, L. F. et al. Neuronal brain-region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Nat. Neurosci. 22, 307â316 (2019).
Svensson, V., Teichmann, S. A. & Stegle, O. SpatialDE: identification of spatially variable genes. Nat. Methods 15, 343â346 (2018).
Lun, A. Bioc Singular. Bioconductor https://doi.org/10.18129/b9.bioc.biocsingular (2019).
Melville, J. uwot: R package. R version 0.1.5 (2019).
Wickham, H. ggplot2âElegant Graphics For Data Analysis https://doi.org/10.1007/978-3-319-24277-4 (Springer, 2016).
Collado-Torres, L., Weber, L. & Hicks, S. LieberInstitute/HumanPilot: archive the HumanPilot code for the preprint version of our project. Zenodo https://doi.org/10.5281/zenodo.3691916 (2020).
Acknowledgements
We thank our colleagues whose efforts have led to the donation of postmortem tissue to advance these studies, including at the Office of the Chief Medical Examiner of the State of Maryland, Baltimore, MA and the Office of the Chief Medical Examiner of Kalamazoo County, Michigan. We also thank L. B. Bigelow and A. Deep-Soboslay for their contributions of diagnostic expertise, and D. R. Weinberger for providing constructive commentary and editing of the manuscript. Finally, we thank the families of the decedents, who donated the brain tissue used in these studies. We also thank the Accelerating Medicines PartnershipâAlzheimerâs Disease (AMP-AD) Target Discovery and Preclinical Validation program and the ROSMAP study. We thank W. S. Ulrich for assistance with http://spatial.libd.org/spatialDE and the Department of Biostatistics at the Johns Hopkins Bloomberg School of Public Health for hosting mirrors of our web application. We thank the Johns Hopkins University SKCCC Flow Cytometry Core and the Johns Hopkins University Transcriptomics and Deep Sequencing Core for supporting snRNA-seq experiments. This project was supported by the Lieber Institute for Brain Development. K.R.M., L.C-T., K.M. and A.E.J. were partially supported by the NIMH (grant no. U01MH122849). S.C.H. and L.M.W. were supported by the National Cancer Institute (grant no. R01CA237170). S.C.H. was also supported by the CZF2019-002443 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley Community Foundation, the National Human Genome Research Institute (grant no. R00HG009007).
Author information
Authors and Affiliations
Contributions
K.R.M. carried out conceptualization, methodology, validation, investigation, writing and visualization L.C.-T. dealt with methodology, software, formal analysis, data curation, writing and visualization. L.M.W. dealt with methodology, software, formal analysis, writing and visualization. C.U. dealt with methodology, investigation and resources. B.K.B. dealt with formal analysis, data curation and visualization. S.R.W. dealt with software and data curation. J.L.C. dealt with software, formal analysis and visualization. M.N.T. dealt with investigation and formal analysis. Z.B. dealt with software. M.T. dealt with formal analysis and visualization. J.C. and Y.Y. dealt with investigation. J.E.K. dealt with resources. T.M.H. dealt with methodology and resources. N.R. dealt with resources, supervision and funding acquisition. S.C.H. dealt with methodology, software, formal analysis, writing, visualization and supervision. K.M. dealt with conceptualization, methodology, writing, supervision, project administration and funding acquisition. A.E.J. dealt with conceptualization, methodology, software, formal analysis, writing, visualization, supervision, project administration and funding acquisition.
Corresponding authors
Ethics declarations
Competing interests
C.U., S.R.W., J.C., Y.Y. and N.R. are employees of 10x Genomics. All other authors declare no conflicts of interest.
Additional information
Peer review information Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 PCP4 expression, related to Fig. 1f.
Log-transformed normalized (logcounts) for PCP4 gene expression across all 12 samples arranged in rows by subject.
Extended Data Fig. 2 Layer-level dendrogram, related to Results: Gene expression in the DLPFC across cortical laminae and Fig. 2.
Dendrogram from the hierarchical clustering performed across all 76 layer-level combinations: 6 layers plus WM across 12 samples, with two layers visually absent in one sample as shown in Supplementary Fig. 5, second row. The layer-level combinations are colored by the brain subject (BR5292, Br5595, Br8100), position (0 or 300) and adjacent spatial replicate number (A or B).
Extended Data Fig. 3 Enrichment of genes expressed in synaptic terminals among neuropil spots, related to Results: Gene expression in the DLPFC across cortical laminae.
We compared DEGs from VGLUT1+ labeled synaptosomes from mouse brain from Hafner et al.30 on the x-axis versus the log2 fold change comparing spot-level expression between spots with 0 cells and spots with >0 cells. Association shown between (a) all expressed homologous genes and (b) those genes that were significant in the Hafner et al. dataset at FDR < 0.05.
Extended Data Fig. 4 Layer-level modeling strategies illustrated with MOBP, related to Results: Fig. 2.
Overview of the different modeling strategies we performed with the layer-level pseudo-bulked expression data. a, The ANOVA model, which evaluates whether the gene is variable in any of the layers (F-statistic); MOBP is the top 10th ranked of such genes. Colors represent each layer. b, The enrichment model, which tests one layer against the rest (t-statistic); MOBP is the top 36th gene for white matter against other layers. Colors show the comparison being done. c, The pairwise model where we test one layer against another (t-statistic); MOBP is the top ranked gene for WM > L3. Data from layers not used is shown in gray. 76 pseudo-bulked layers were used for computing the statistics in aâc.
Extended Data Fig. 5 Known marker genes compared to the best gene, related to Results: Identifying novel layer-enriched genes in human cortex.
Using the optimal models (Method Details: Known marker genes optimal modeling) for each known marker gene we compared the marker genes against the best gene for that given model. Results are visualized using the -log10 p-values for the marker gene (y-axis) against the best gene for that model (x-axis). Points are colored by the -log10 rank percentile of that gene in such a way that the top ranked gene is -log10(1/22,331) and colored in yellow.
Extended Data Fig. 6 Replication of Visium layer-enriched genes by Allen Brain Atlas in situ hybridization (ISH) data, Related to Fig. 3.
aâf, Left panels: Boxplots of log-transformed normalized expression (logcounts) for genes CUX2 (a, L2 > L6, p = 3.75e-19), ADCYAP1 (b, L3>rest, p = 3.57e-08), RORB (c, L4 > rest, p = 2.91e-07), PCP4 (d, L5 > rest, p = 1.81e-19), NTNG2 (E, L6>rest, p = 5.22e-13), and MBP (f, WM>rest, p = 1.71e-20). Middle panels: Spotplots of log-transformed normalized expression (logcounts) for sample 151673 for CUX2 (a), ADCYAP1 (b), RORB (c), PCP4 (d), NTNG2 (e), and MBP (f). Right panels: in situ hybridization (ISH) images from DLPFC (a, c, d, e, f) or frontal cortex (b) of adult human brain from Allen Brain Instituteâs Human Brain Atlas: http://human.brain-map.org/33. Scale bar for Allen Brain Atlas ISH images = 1.6âmm. 76 pseudo-bulked layers were used for computing the statistics in a-f.
Extended Data Fig. 7 smFISH validation of L1- and L5-enriched genes, related to Fig. 4.
a,b, Left panels: Boxplots of log-transformed normalized expression (logcounts) for previously identified L1 and L5 marker genes RELN (a, L1>rest, p = 7.94e-15,) and BCL11B (b, L5>L3, p = 4.44e-02), respectively. Right panels: Spotplots of log-transformed normalized expression (logcounts) for sample 151673 for genes RELN (a) and BCL11B (b). Corresponding boxplots and spotplots for Visium-identified genes AQP4 and TRABD2A in Fig. 4. c, Multiplex single molecule fluorescent in situ hybridization (smFISH) in a cortical strip of DLPFC. Maximum intensity confocal projections depicting expression of DAPI (nuclei), RELN (L1), AQP4 (L1), BCL11B (L5), TRABD2A (L5) and lipofuscin autofluorescence. Merged image without lipofuscin autofluorescence. Scale bar = 500âμm. 76 pseudo-bulked layers were used for computing the statistics in a, b.
Extended Data Fig. 8 Spatial registration of snRNA-seq data, related to Fig. 5.
Heatmaps of Pearson correlation values evaluating the relationship between our Visium-derived layer-enriched statistics (y-axis) for 700 genes and a, Data from DLPFC from two donors, with data-driven cluster numbers and broad cell classes on the x-axis. b, Data from Velmeshev et al. with data-driven clusters provided in their processed data.
Extended Data Fig. 9 âUnsupervisedâ clustering results for sample 151673, related to Fig. 7.
Visualization of clustering results for âunsupervisedâ methods (Supplementary Table 10) for sample 151673. Each panel displays clustering results from one clustering method. Rows display methods either without (top row) or with (bottom row) spatial coordinates included as additional features for clustering. A complete description of the different combinations of methodologies implemented in the clustering methods is provided in Supplementary Table 10.
Extended Data Fig. 10 âSemi-supervisedâ and âmarkersâ clustering results for sample 151673, related to Fig. 7.
Visualization of clustering results for âsemi-supervisedâ and known âmarkersâ gene set-based methods (Supplementary Table 10) for sample 151673. Each panel displays clustering results from one clustering method. Rows display methods either without (top row) or with (bottom row) spatial coordinates included as additional features for clustering. A complete description of the different combinations of methodologies implemented in the clustering methods is provided in Supplementary Table 10.
Supplementary information
Supplementary Information
Supplementary Figs. 1â12 and Supplementary Tables 1â10 (titles and legends).
Rights and permissions
About this article
Cite this article
Maynard, K.R., Collado-Torres, L., Weber, L.M. et al. Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci 24, 425â436 (2021). https://doi.org/10.1038/s41593-020-00787-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41593-020-00787-0
This article is cited by
-
Cortical gene expression architecture links healthy neurodevelopment to the imaging, transcriptomics and genetics of autism and schizophrenia
Nature Neuroscience (2024)
-
Cellular communities reveal trajectories of brain ageing and Alzheimerâs disease
Nature (2024)
-
Comparing stem cells, transdifferentiation and brain organoids as tools for psychiatric research
Translational Psychiatry (2024)
-
Proteomic features of gray matter layers and superficial white matter of the rhesus monkey neocortex: comparison of prefrontal area 46 and occipital area 17
Brain Structure and Function (2024)
-
SONAR enables cell type deconvolution with spatially weighted Poisson-Gamma model for spatial transcriptomics
Nature Communications (2023)