Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article

A finite element method for animating large viscoplastic flow

Published: 29 July 2007 Publication History

Abstract

We present an extension to Lagrangian finite element methods to allow for large plastic deformations of solid materials. These behaviors are seen in such everyday materials as shampoo, dough, and clay as well as in fantastic gooey and blobby creatures in special effects scenes. To account for plastic deformation, we explicitly update the linear basis functions defined over the finite elements during each simulation step. When these updates cause the basis functions to become ill-conditioned, we remesh the simulation domain to produce a new high-quality finite-element mesh, taking care to preserve the original boundary. We also introduce an enhanced plasticity model that preserves volume and includes creep and work hardening/softening. We demonstrate our approach with simulations of synthetic objects that squish, dent, and flow. To validate our methods, we compare simulation results to videos of real materials.

Supplementary Material

JPG File (pps016.jpg)
MP4 File (pps016.mp4)

References

[1]
Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617--625.
[2]
Bargteil, A. W., Goktekin, T. G., O'Brien, J. F., and Strain, J. A. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19--38.
[3]
Borouchaki, H., Laug, P., Cherouat, A., and Saanouni, K. 2005. Adaptive remeshing in large plastic strain with damage. International Journal for Numerical Methods in Engineering 63, 1 (February), 1--36.
[4]
Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594--603.
[5]
Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In The Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 28--36.
[6]
Brochu, T. 2006. Fluid Animation with Explicit Surface Meshes and Boundary-Only Dynamics. Master's thesis, University of British Columbia.
[7]
Cheng, S.-W., Dey, T. K., Edelsbrunner, H., Facello, M. A., and Teng, S.-H. 1999. Sliver exudation. In The Proceedings of the Symposium on Computational Geometry, 1--13.
[8]
Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In The Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 219--228.
[9]
Desbrun, M., and Gascuel, M.-P. 1995. Animating soft substances with implicit surfaces. In The Proceedings of ACM SIGGRAPH, 287--290.
[10]
Dey, T., Edelsbrunner, H., Guha, S., and Nekhayev, D. V. 1999. Topology preserving edge contraction. Publ. Inst. Math. (Beograd) (N.S.) 66, 23--45.
[11]
Enright, D. P., Marschner, S. R., and Fedkiw, R. P. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. 21, 3, 736--744.
[12]
Goktekin, T. G., Bargteil, A. W., and O'Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463--468.
[13]
Hieber, S. E., and Koumoutsakos, P. 2005. A Lagrangian particle level set method. J. Comp. Phys. 210, 1, 342--367.
[14]
Hill, R. 1950. The Mathematical Theory of Plasticity. Oxford University Press, Inc.
[15]
Hudson, B., Miller, G., and Phillips, T. 2006. Sparse Voronoi Refinement. In The Proceedings of the 15th International Meshing Roundtable.
[16]
Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In The Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 131--140.
[17]
Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In The Proceedings of Eurographics Symposium on Point-based Graphics, 125--133.
[18]
Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3, 820--825.
[19]
Labelle, F. 2006. Sliver removal by lattice refinement. In The Proceedings of the ACM Symposium on Computational Geometry, 347--356.
[20]
Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812--819.
[21]
Mauch, S., Noels, L., Zhao, Z., and Radovitzky, R. 2006. Lagrangian simulation of penetration environments via mesh healing and adaptive optimization. In The Proceedings of the 25th Army Science Conference.
[22]
Müller, M., and Gross, M. 2004. Interactive virtual materials. In The Proceedings of Graphics Interface, 239--246.
[23]
Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In The Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 49--54.
[24]
Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In The Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 141--151.
[25]
O'Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291--294.
[26]
Pauly, M., Keiser, R., Adams, B., Dutré;, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957--964.
[27]
Shewchuk, J. R. 2002. What is a good linear element? Interpolation, Conditioning, and Quality Measures. In 11 th Int. Meshing Roundtable, 115--126.
[28]
Shewchuk, R. 2005. Star splaying: an algorithm for repairing Delaunay triangulations and convex hulls. In The Proceedings of the Symposium on Computational Geometry, 237--246.
[29]
Simo, J., and Hughes, T. 1998. Computational Inelasticity. Springer-Verlag.
[30]
Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In The Proceedings of ACM SIGGRAPH, 269--278.
[31]
Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and melting deformable models (from goop to glop). In The Proceedings of Graphics Interface, 219--226.
[32]
Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph, 24, 3, 965--972.

Cited By

View all
  • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
  • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
  • (2024)A Unified Particle-Based Solver for Non-Newtonian Behaviors SimulationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.334145330:4(1998-2010)Online publication date: Apr-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 26, Issue 3
July 2007
976 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1276377
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 July 2007
Published in TOG Volume 26, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational fluid dynamics
  2. deformable models
  3. elastoplastic
  4. finite element methods
  5. natural phenomena
  6. physically based animation
  7. viscoelastic
  8. viscoplastic

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)45
  • Downloads (Last 6 weeks)5
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Dynamic Duo of Finite Elements and Material PointsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657449(1-11)Online publication date: 13-Jul-2024
  • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
  • (2024)A Unified Particle-Based Solver for Non-Newtonian Behaviors SimulationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.334145330:4(1998-2010)Online publication date: Apr-2024
  • (2024)Large-Strain Surface Modeling Using PlasticityIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.328981130:8(5183-5197)Online publication date: Aug-2024
  • (2024)Peridynamic‐based modeling of elastoplasticity and fracture dynamicsComputer Animation and Virtual Worlds10.1002/cav.224235:4Online publication date: 16-Jul-2024
  • (2023)Effects of time-varying liquid bridge forces on rheological properties, and resulting extrudability and constructability of three-dimensional printing mortarFrontiers of Structural and Civil Engineering10.1007/s11709-023-0999-117:9(1295-1309)Online publication date: 20-Nov-2023
  • (2023)Stretching Simulation of Viscoelastic Fluid with Spring ConnectionSimulation and Modeling Methodologies, Technologies and Applications10.1007/978-3-031-23149-0_5(94-105)Online publication date: 11-Feb-2023
  • (2022)Physics-Based Simulation of Soft-Body Deformation Using RGB-D DataSensors10.3390/s2219722522:19(7225)Online publication date: 23-Sep-2022
  • (2022)Simulating Fracture in Anisotropic Materials Containing ImpuritiesProceedings of the 15th ACM SIGGRAPH Conference on Motion, Interaction and Games10.1145/3561975.3562956(1-10)Online publication date: 3-Nov-2022
  • (2022)ElastoMonolithACM Transactions on Graphics10.1145/3550454.355547441:6(1-19)Online publication date: 30-Nov-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media