Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1321440.1321480acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Utilizing a geometry of context for enhanced implicit feedback

Published: 06 November 2007 Publication History

Abstract

Implicit feedback algorithms utilize interaction between searchers and search systems to learn more about users' needs and interests than expressed in query statements alone. This additional information can be used to formulate improved queries or directly improve retrieval performance. In this paper we present a geometric framework that utilizes multiple sources of evidence present in this interaction context (e.g., display time, document retention) to develop enhanced implicit feedback models personalized for each user and tailored for each search task. We use rich interaction logs (and associated metadata such as relevance judgments), gathered during a longitudinal user study, as relevance stimuli to compare an implicit feedback algorithm developed using the framework with alternative algorithms. Our findings demonstrate both the effectiveness of our proposed algorithm and the potential value of incorporating multiple sources of interaction evidence when developing implicit feedback algorithms.

References

[1]
N. J. Belkin. Helping people find what they don't know. Comm. of ACM, 43(8):58--61, 2000.
[2]
G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. Dumais. The vocabulary problem in human-system communication. Comm. of the ACM, 30(11):964--971, 1987.
[3]
G. Salton and C. Buckley. Improving retrieval performance by relevance feedback. Journal of the American Society for Information Science, 41(4):288--297, 1990.
[4]
C. Buckley, G. Salton, and J. Allan. The effect of adding relevance information in a relevance feedback environment. Proc. of SIGIR, pp. 292--300, New York, NY, USA, 1994. Springer-Verlag New York, Inc.
[5]
M. Beaulieu. Experiments with interfaces to support query expansion. J. of IR, 53(1):8--19, 1997.
[6]
D. Kelly and J. Teevan. Implicit feedback for inferring user preference: a bibliography. SIGIR Forum, 37(2):18--28, 2003.
[7]
M. Morita and Y. Shinoda. Information filtering based on user behavior analysis and best match text retrieval. Proc. of SIGIR, pp. 272--281, New York, NY, USA, 1994. Springer-Verlag New York, Inc.
[8]
M. Claypool, P. Le, M. Wased, and D. Brown. Implicit interest indicators. Proc. of the Int.l Conf. on Intelligent User Interfaces, pp. 33--40, New York, NY, USA, 2001.
[9]
C. Vogt. Passive feedback collection - an attempt to debunk the myth of clickthroughs. Proc. of TREC, pp. 141--150, Gaithersburg, MD, 2000.
[10]
E. Agichtein, E. Brill, and S. Dumais. Improving web search ranking by incorporating user behavior information. Proc. of SIGIR, pp. 19--26, New York, NY, USA, 2006. ACM Press.
[11]
R. W. White and D. Kelly. A study on the effects of personalization and task information on implicit feedback performance. Proc.of CIKM, pp. 297--306, New York, NY, USA, 2006. ACM Press.
[12]
J. Teevan, S. Dumais, and E. Horvitz. Personalizing search via automated analysis of interests and activities. Proc. of SIGIR, pp. 449--456, New York, NY, USA, 2005. ACM Press.
[13]
S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. Evaluating implicit measures to improve web search. ACM TOIS, 23(2):147--168, 2005.
[14]
T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Accurately interpreting clickthrough data as implicit feedback. Proc. of SIGIR, pp. 154--161, New York, NY, USA, 2005. ACM Press.
[15]
D. Kelly and N. J. Belkin. Display time as implicit feedback: understanding task effects. Proc. of SIGIR, pp. 377--384, New York, NY, USA, 2004. ACM Press.
[16]
R. W. White, I. Ruthven, and J. M. Jose. A study of factors affecting the utility of implicit relevance feedback. Proc. of SIGIR, pp. 35--42, New York, NY, USA, 2005. ACM Press.
[17]
J. Budzik and K. Hammond. Watson: Anticipating and contextualizing information needs. Meeting of the ASIS, pp. 727--740, Medford, NJ, 1999.
[18]
R. W. White, I. Ruthven, and J. M. Jose. Finding relevant documents using top ranking sentences: an evaluation of two alternative schemes. Proc. of SIGIR, pp. 57--64, New York, NY, USA, 2002. ACM Press.
[19]
J. Kim, D. W. Oard, and K. Romanik. Using implicit feedback for user modeling in internet and intranet searching. Technical report, College of Library and Information Services, University of Maryland at College Park, 2000.
[20]
H. Lieberman. Letizia: An agent that assists web browsing. In Chris S. Mellish, editor, Proc. of IJCAI, pp. 924--929, Montreal, Quebec, Canada, 1995. Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.
[21]
T. Joachims, D. Freitag, and T. Mitchell. Webwatcher: A tour guide for the world wide web. Proc. of IJCAI, pp. 770--777, San Francisco, CA, 1997. Morgan Kaufmann.
[22]
E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The Lumiere project: Bayesian user modeling for inferring the goals and needs of software users. Proc. of the Conf. on Uncertainty in Artificial Intelligence, pp. 256--265, Madison, WI, July 1998.
[23]
T. Joachims. Optimizing search engines using clickthrough data. Proc. of SIGKDD, pp. 133--142, New York, NY, USA, 2002. ACM Press.
[24]
F. Radlinski and T. Joachims. Query chains: learning to rank from implicit feedback. Proc. of SIGKDD, pp. 239--248, New York, NY, USA, 2005.
[25]
R. W. White, M. Bilenko, and S. Cucerzan. Studying the use of popular destinations to enhance web search interaction. Proc. of SIGIR, pp. 159--166, New York, NY, USA, 2007.
[26]
G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing. Comm. of the ACM, 18(11):613--620, November 1975.
[27]
G. Salton. Automatic Text Processing. Addison-Wesley, 1989.
[28]
S. K. M. Wong and V. V. Raghavan. Vector space model of information retrieval - a reevaluation. Proc. of SIGIR, pp. 167--185, Cambridge, England, 1984.
[29]
D. Dubin. The most influential paper Gerard Salton never wrote. Library Trends, 52(4):748--764, 2004.
[30]
C. J. van Rijsbergen. The Geometry of Information Retrieval. Cambridge University Press, UK, 2004.
[31]
M. Melucci. Context modeling and discovery using vector space bases. Proc. of CIKM, pp. 808--815, Bremen, Germany, November 2005.
[32]
M. Melucci. Ranking in context using vector spaces. Proc. of CIKM, pp. 477--478, Arlington, VA, USA, November 2006.
[33]
M. Melucci. Exploring a mechanics for context-aware information retrieval. Proc. of the AAAI Spring Symposium on Quantum Interaction, Stanford, CA, USA, March 2007. AAAI Press.
[34]
G. Salton. Mathematics and information retrieval. J. of Documentation, 35(1):1--29, 1979.
[35]
S. Deerwester, S. T. Dumais, G. W. Furnas, T. Landauer, and R. Harshman. Indexing by latent semantic analysis. J. of Am. Soc. Inf. Science, 41(6):391--407, 1990.
[36]
P. Ingwersen and K. Jäarvelin. The Turn: Integration of Information Seeking and Retrieval in Context. Springer, 2005.
[37]
D. Kelly. Understanding Implicit Feedback And Document Preference: A Naturalistic User Study. PhD thesis, Rutgers, The State University of New Jersey, 2004.
[38]
W. Kraaij, T. Westerveld, and D. Hiemstra. The importance of prior probabilities for entry page search. Proc. of SIGIR, pp. 27--34, Tampere, Finland, 2002. ACM Press
[39]
K. Jarväelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM TOIS, 20(4):422--446, 2002.
[40]
A. Singhal, C. Buckley, and M. Mitra. Pivoted document length normalization. Proc. of SIGIR, pp. 21--29, Zurich, Switzerland, 1996. ACM Press.
[41]
I. Campbell. Interactive evaluation of the ostensive model using a new test collection of images with multiple relevance assessments. J. of IR, 2(1):85--112, 2000.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
CIKM '07: Proceedings of the sixteenth ACM conference on Conference on information and knowledge management
November 2007
1048 pages
ISBN:9781595938039
DOI:10.1145/1321440
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 November 2007

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. geometry of information retrieval
  2. implicit relevance feedback

Qualifiers

  • Research-article

Conference

CIKM07

Acceptance Rates

Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

Upcoming Conference

CIKM '25

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Re-ranking with context for high-performance biomedical information retrievalInternational Journal of Data Mining and Bioinformatics10.1504/IJDMB.2012.0481726:2(115-129)Online publication date: 23-Dec-2018
  • (2015)Future WorkIntroduction to Information Retrieval and Quantum Mechanics10.1007/978-3-662-48313-8_4(189-195)Online publication date: 9-Dec-2015
  • (2015)Quantum Mechanics and Information RetrievalIntroduction to Information Retrieval and Quantum Mechanics10.1007/978-3-662-48313-8_3(101-188)Online publication date: 9-Dec-2015
  • (2015)Elements of Quantum MechanicsIntroduction to Information Retrieval and Quantum Mechanics10.1007/978-3-662-48313-8_2(53-100)Online publication date: 9-Dec-2015
  • (2015)Elements of Information RetrievalIntroduction to Information Retrieval and Quantum Mechanics10.1007/978-3-662-48313-8_1(1-51)Online publication date: 9-Dec-2015
  • (2014)Personalizing Web Search Results Based on Subspace ProjectionInformation Retrieval Technology10.1007/978-3-319-12844-3_14(160-171)Online publication date: 2014
  • (2011)Combining interaction and content for feedback-based rankingProceedings of the Second international conference on Multidisciplinary information retrieval facility10.5555/2018142.2018150(46-61)Online publication date: 6-Jun-2011
  • (2010)Toward the design of a methodology to predict relevance through multiple sources of evidenceProceedings of the 3rd workshop on Ph.D. students in information and knowledge management10.1145/1871902.1871918(83-86)Online publication date: 30-Oct-2010
  • (2010)Exploiting Contextual Information from Event Logs for Personalized RecommendationComputer and Information Science 201010.1007/978-3-642-15405-8_11(121-139)Online publication date: 2010
  • (2009)Towards a Better Ranking for Biomedical Information Retrieval Using ContextProceedings of the 2009 IEEE International Conference on Bioinformatics and Biomedicine10.1109/BIBM.2009.82(344-349)Online publication date: 1-Nov-2009
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media