Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1377676.1377701acmconferencesArticle/Chapter ViewAbstractPublication PagessocgConference Proceedingsconference-collections
research-article

Markov incremental constructions

Published: 09 June 2008 Publication History
  • Get Citation Alerts
  • Abstract

    A classic result asserts that many geometric structures can be constructed optimally by successively inserting their constituent parts in random order. These randomized incremental constructions (RICs) still work with imperfect randomness: the dynamic operations need only be "locally" random. Much attention has been given recently to inputs generated by Markov sources. These are particularly interesting to study in the framework of RICs, because Markov chains provide highly nonlocal randomness, which incapacitates virtually all known RIC technology.
    We generalize Mulmuley's theory of Θ-series and prove that Markov incremental constructions with bounded spectral gap are optimal within polylog factors for trapezoidal maps, segment intersections,and convex hulls in any fixed dimension. The main contribution of this work is threefold: (i)extending the theory of abstract configuration spaces to the Markov setting; (ii)proving Clarkson-Shor type bounds for this new model; (iii)applying the results to classical geometric problems. We hope that this work will pioneer a new approach to average-case analysis in computational geometry.

    References

    [1]
    N. Amenta, S. Choi, and G. Rote. Incremental constructions con BRIO. In SCG '03: Proceedings of the nineteenth annual symposium on Computational geometry, pages 211--219, New York, NY, USA, 2003. ACM.
    [2]
    G. Barnes and U. Feige. Short random walks on graphs. SIAM J. Discrete Math., 9(1):19--28, 1996.
    [3]
    J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Applications of random sampling to on-line algorithms in computational geometry. Discrete Comput. Geom., 8(1):51--71, 1992.
    [4]
    J. D. Boissonnat and M. Teillaud. The hierarchical representation of objects: the Delaunay tree. In SCG '86: Proceedings of the second annual symposium on Computational geometry, pages 260--268, New York, NY, USA, 1986. ACM.
    [5]
    J.-D. Boissonnat and M. Teillaud. On the randomized construction of the Delaunay tree. Theoret. Comput. Sci., 112(2):339--354, 1993.
    [6]
    J.-D. Boissonnat and M. Yvinec. Algorithmic geometry. Cambridge University Press, New York, NY, USA, 1998.
    [7]
    A. Z. Broder and A. R. Karlin. Bounds on the cover time. J. Theoret. Probab., 2(1):101--120, 1989.
    [8]
    P. Chassaing. Optimality of move-to-front for self-organizing data structures with locality of references. Ann. Appl. Probab., 3(4):1219--1240, 1993.
    [9]
    O. Cheong, K. Mulmuley, and E. A. Ramos. Randomization and derandomization. In J. E. Goodman and J. O'Rourke, editors, Handbook of discrete and computational geometry, chapter 40, pages 895--926. CRC Press, Inc., Boca Raton, FL, USA, 2nd edition, 2004.
    [10]
    L. P. Chew. Building voronoi diagrams for convex polygons in linear expected time. Technical Report PCS-TR90-147, Dartmouth College, Hanover, NH, USA, 1990.
    [11]
    F. R. K. Chung. Spectral Graph Theory (CBMS Regional Conference Series in Mathematics, No. 92). American Mathematical Society, Providence, RI, USA, 1997.
    [12]
    K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental constructions. Comput. Geom., 3(4):185--212, 1993.
    [13]
    K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry. II. Discrete Comput. Geom., 4(5):387--421, 1989.
    [14]
    M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms and Applications. Springer Verlag, 2000.
    [15]
    O. Devillers. The Delaunay hierarchy. Internat. J. Found. Comput. Sci., 13:163--180, 2002. special issue on triangulations.
    [16]
    O. Devillers and P. Guigue. The shuffling buffer. Int. J. Comput. Geometry Appl., 11(5):555--572, 2001.
    [17]
    O. Devillers, S. Meiser, and M. Teillaud. Fully dynamic Delaunay triangulation in logarithmic expected time per operation. Comput. Geom., 2(2):55--80, 1992.
    [18]
    K. Dobrindt and M. Yvinec. Remembering conflicts in history yields dynamic algorithms. In Algorithms and computation (Hong Kong, 1993), volume 762 of Lecture Notes in Comput. Sci., pages 21--30, Berlin, 1993. Springer.
    [19]
    D. Fox, W. Burgard, and S. Thrun. Markov localization for reliable robot navigation and people detection. In Selected Papers from the International Workshop on Sensor Based Intelligent Robots, pages 1--20, London, UK, 1999. Springer--Verlag.
    [20]
    L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica, 7(4):381--413, 1992.
    [21]
    R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cambridge, 1990.
    [22]
    G. Hotz. Search trees and search graphs for markov sources. Elektronische Informationsverarbeitung und Kybernetik, 29(5):283--292, 1993.
    [23]
    H. W. Jensen. Realistic image synthesis using photon mapping. A K Peters Ltd., Natick, MA, 2001.
    [24]
    S. Kapoor and E. M. Reingold. Stochastic rearrangement rules for self-organizing data structures. Algorithmica, 6(2):278--291, 1991.
    [25]
    A. R. Karlin, S. J. Phillips, and P. Raghavan. Markov paging. SIAM J. Comput., 30(3):906--922, 2000.
    [26]
    L. K. Konneker and Y. L. Varol. A note on heuristics for dynamic organization of data structures. Inf. Process. Lett., 12(5):213--216, 1981.
    [27]
    K. Lam, M. Y. Leung, and M. K. Siu. Self-organizing files with dependent accesses. J. Appl. Probab., 21(2):343--359, 1984.
    [28]
    P. Lu, X. Zeng, X. Huang, and Y. Wang. Navigation in 3D game by markov model based head pose estimating. In ICIG '04: Proceedings of the Third International Conference on Image and Graphics, pages 493--496, Washington, DC, USA, 2004. IEEE Computer Society.
    [29]
    J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming. Algorithmica, 16(4--5):498--516, 1996.
    [30]
    K. Mehlhorn, M. Sharir, and E. Welzl. Tail estimates for the efficiency of randomized incremental algorithms for line segment intersection. Comput. Geom., 3:235--246, 1993.
    [31]
    G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings and nearest neighbor graphs. J. ACM, 44(1):1--29, 1997.
    [32]
    K. Mulmuley. A fast planar partition algorithm. I. J. Symbolic Comput., 10(3-4):253--280, 1990.
    [33]
    K. Mulmuley. A fast planar partition algorithm. II. J. ACM, 38(1):74--103, 1991.
    [34]
    K. Mulmuley. Computational Geometry: An Introduction through Randomized Algorithms. Prentice-Hall, Englewood Cliffs, 1994.
    [35]
    K. Mulmuley. Randomized geometric algorithms and pseudorandom generators. Algorithmica, 16(4-5):450--463, 1996.
    [36]
    R. M. Phatarfod, A. J. Pryde, and D. Dyte. On the move-to-front scheme with Markov dependent requests. J. Appl. Probab., 34(3):790--794, 1997.
    [37]
    F. Schulz and E. Schömer. Self-organizing data structures with dependent accesses. In ICALP, pages 526--537, 1996.
    [38]
    O. Schwarzkopf. Dynamic maintenance of geometric structures made easy. In Proceedings of the 32nd annual symposium on Foundations of computer science, pages 197--206, Los Alamitos, CA, USA, 1991. IEEE Computer Society Press.
    [39]
    R. Seidel. A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom., 1:51--64, 1991.
    [40]
    R. Seidel. Small-dimensional linear programming and convex hulls made easy. Discrete Comput. Geom., 6(5):423--434, 1991.
    [41]
    R. Seidel. Backwards analysis of randomized geometric algorithms. In New trends in discrete and computational geometry, volume 10 of Algorithms Combin., pages 37--67. Springer, Berlin, 1993.
    [42]
    G.S. Shedler and C. Tung. Locality in page reference strings. SIAM Journal on Computing, 1(3):218--241, 1972.
    [43]
    E. Veach and L.J. Guibas. Metropolis light transport. In SIGGRAPH '97: Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pages 65--76, New York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.
    [44]
    C. Wellington, A. Courville, and A. T. Stentz. A generative model of terrain for autonomous navigation in vegetation. Int. J. Rob. Res., 25(12):1287--1304, 2006.
    [45]
    E. Welzl. Smallest enclosing disks (balls and ellipsoids). In New results and new trends in computer science (Graz, 1991), volume 555 of Lecture Notes in Comput. Sci., pages 359--370. Springer, Berlin, 1991.

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SCG '08: Proceedings of the twenty-fourth annual symposium on Computational geometry
    June 2008
    304 pages
    ISBN:9781605580715
    DOI:10.1145/1377676
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 09 June 2008

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. clarkson-shor bound
    2. expander graphs
    3. randomized incremental constructions

    Qualifiers

    • Research-article

    Conference

    SoCG08
    SoCG08: 24th Annual Symposium on Computational Geometry
    June 9 - 11, 2008
    MD, College Park, USA

    Acceptance Rates

    Overall Acceptance Rate 625 of 1,685 submissions, 37%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 164
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 26 Jul 2024

    Other Metrics

    Citations

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media