Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1508044.1508071acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
research-article

Light interaction with human skin: from believable images to predictable models

Published: 10 December 2008 Publication History

Abstract

Recent research efforts in image synthesis have been directed toward the rendering of believable and predictable images of biological materials. This course addresses an important topic in this area, namely the predictive simulation of skin's appearance. The modeling approaches, algorithms and data examined during this course can be also applied to the rendering of other organic materials such as hair and ocular tissues.

References

[1]
Abdul-Rahman, A., and Chen, M. Spectral volume rendering based on the Kubelka-Munk theory. Computer Graphics Forum 24, 3 (2005), 413--422.
[2]
Alaluf, S., Heinrich, U., Stahl, W., Tronnier, H., and Wiseman, S. Dietary carotenoids contribute to normal human skin color and uv photosensitivity. Journal of Nutrition 132 (2002), 399--403.
[3]
Anderson, R., and Parrish, J. The optics of human skin. Journal of Investigative Dermatology 77, 1 (1981), 13--19.
[4]
Angelopoulou, E. Understanding the color of human skin. In Human Vision and Electronic Imaging VI (2001), SPIE, vol. 4299, pp. 243--251.
[5]
ANSI. Nomenclature and definitions for illuminating engineering. In ANSI/IES RP-6-1986. Illuminating Engineering Society of North America, New York, 1986.
[6]
Arvo, J. Analytic Methods for Simulated Light Transport. PhD thesis, Yale University, U.S.A., 1995.
[7]
Baranoski, G. Modeling the interaction of infrared radiation (750 to 2500nm) with bifacial and unifacial plant leaves. Remote Sensing of Environment 100 (2006), 335--347.
[8]
Baranoski, G., and Krishnaswamy, A. An introduction to light interaction with human skin. Revista de Informática Teórica e Aplicada 11 (2004), 33--62.
[9]
Baranoski, G., Krishnaswamy, A., and Kimmel, B. An investigation on the use of data-driven scatering profiles in Monte Carlo simulations of ultraviolet light propagation in skin tissues. Physics in Medicine and Biology 49 (2004), 4799--4809.
[10]
Baranoski, G., Krishnaswamy, A., and Kimmel, B. Increasing the predictability of tissue subsurface scattering simulations. The Visual Computer 21, 4 (May 2005), 265--278.
[11]
Baranoski, G., and Lam, M. Qualitative assessment of undetectable melanin distribution in lightly pigmented irides. Journal of Biomedical Optics 12, 3 (August 2007), (030501):1--3.
[12]
Baranoski, G., and Rokne, J. An algorithmic reflectance and transmittance model for plant tissue. Computer Graphics Forum (EUROGRAPHICS Proceedings) 16, 3 (September 1997), 141--150.
[13]
Baranoski, G., and Rokne, J. Light Interaction with Plants: A Computer Graphics Perspective. Horwood Publishing, Chichester, UK, 2004.
[14]
Baranoski, G., Rokne, J., and Xu, G. Virtual spectrophotometric measurements for biologically and physically-based rendering. The Visual Computer 17, 8 (2001), 506--518.
[15]
Barkas, W. Analysis of light scattered from a surface of low gloss into its specular and diffuse components. Proc. of Physical Society London 51 (1939), 274--295.
[16]
Barth, J., Cadet, J., Césarini, J., Fitzpatrick, T., McKinlay, A., Mutzhas, M., Pathak, M., Peak, M., Sliney, D., and Urbach, F. CIE-134 collection in photobiology and photochemistry. In TC6-26 report: Standardization of the Terms UV-A1, UV-A2 and UV-B (1999), Commission International de L'Eclairage.
[17]
Bell, I., and Baranoski, G. More than RGB: moving toward spectral color reproduction. ACM SIGGRAPH Course Notes, San Diego, CA, July 2002. Course 24.
[18]
Bentley, J. Multidimensional binary search trees used for associative searching. Comunications of the ACM 18, 9 (September 1975), 509--517.
[19]
Berry, E. Diffuse reflection of light from a matt surface. Journal of the Optical Society of America 7, 8 (August 1923), 627--633.
[20]
Blinn, J. Models of light reflection for computer synthesized images. Computer Graphics (SIGGRAPH Proceedings) 11, 2 (1977), 192--198.
[21]
Bohren, C., and Huffman, D. Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York, 1983.
[22]
Bouguer, M. Traite d'optique sur la gradation de la lumiére. M. Ábbe de Lacaille, Paris, 1760.
[23]
Bruls, W., and van der Leun, J. Forward scattering properties of human epidermal layers. Photochem. Photobiol. 40 (1984), 231--242.
[24]
Burden, R., and Faires, J. Numerical Analysis, fifth ed. PWS-KENT Publishing Company, Boston, 1993.
[25]
Butler, W. Absorption spectroscopy in vivo: Theory and applications. Annual Review of Plant Physiology 15 (1964), 451--470.
[26]
Chandrasekhar, S. Radiative Transfer. Dover Publications Inc., New York, 1960.
[27]
Chedekel, M. Photophysics and photochemistry of melanin. In Melanin: Its Role in Human Photoprotection (Overland Park, Kansas, USA, 1995), M. C. L. Zeise and T. Fitzpatrick, Eds., Valdenmar Publishing Company, pp. 11--22. 2223b.
[28]
Cheong, W., Prahl, S., and Welch, A. A review of the optical properties of biological tissues. IEEE Journal of Quantum Electronics 26, 12 (December 1990), 2166--2185.
[29]
Churmakov, D., Meglinsky, I., Piletsky, S., and Greenhalgh, D. Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation. Journal of Physics D: Applied Physics 36 (July 2003), 1722--1728.
[30]
Coleman, T., and an Loan, C. Handbook of Matrix Computations. SIAM Publications, Philadelphia, PA, 1988.
[31]
Contini, D., Martelli, F., and Zaccanti, G. Photon migration through a turbid slab described by a model based on diffusion aproximation. I. theory. Applied Optics 39, 19 (1997), 4587--4599.
[32]
Cook, R., and Torrance, K. A reflectance model for computer graphics. ACM Transactions on Graphics 1, 1 (January 1982), 7--24.
[33]
Cotton, S. A noninvasive skin imaging system. Tech. Rep. CSR-97-03, School of Computer Science, The University of Birmingham, 1997.
[34]
Cotton, S., and Claridge, E. Developing a predictive model of skin colouring. In SPIE Vol. 2708, Medical Imaging 1996 (1996), pp. 814--825.
[35]
Dana, K., van Ginneken, B., Nayar, S., and Koenderink, J. Reflectance and texture of real world surfaces. ACM Transactions on Graphics 18, 1 (1999), 1--34.
[36]
d'Eon, E., Luebke, D., and Enderton, E. A system for efficient rendering of human skin. In ACM SIGGRAPH 2007 Sketches (New York, NY, USA, 2007), ACM, p. 24.
[37]
Diffey, B. A mathematical model for ultraviolet optics in skin. Physics in Medicine and Biology 28, 6 (1983), 647--657.
[38]
Doi, M., and Tominaga, S. Spectral estimation of human skin color using the Kubelka-Munk theory. In SPIE/IS&T Electronic Imaging (2003), SPIE, vol. 5008, pp. 221--228.
[39]
Dongarra, J., Bunch, J., Moler, C., and Stewart, G. LINPACK Users' Guides. SIAM Publications, Philadelphia, PA, 1979.
[40]
Donner, C., and Jensen, H. Light diffusion in multi-layered translucent materials. ACM Transactions on Graphics 24, 3 (July 2005), 1032--1039.
[41]
Donner, C., and Jensen, H. A spectral bssrdf for shading human skin. In Rendering Techniques 2006: 17th Eurographics Workshop on Rendering (June 2006), pp. 409--418.
[42]
Doornbos, R., Lang, R., Aalders, M., Cross, F., and Sterenborg, H. The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy. Physics in Medicine and Biology 44 (1999), 967--981.
[43]
Dorsey, J., Rushmeier, H., and Sillion, F. Digital Modeling of Material Appearance. Morgan Kaufmann/Elsevier, 2007.
[44]
Dunn, A., and Richards-Kortum, R. Three-dimensional computation of light scattering from cells. IEEE Selected Topics in Quantum Electronics 2 (1996), 898--905.
[45]
E. Anderson, Z. B., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen, D. LAPACK Users' Guides, 3rd ed. SIAM Publications, Philadelphia, PA, 1999.
[46]
Eagan, W., and Hilgeman, T. Optical Properties of Inhomogeneous Materials. Academic Press, New York, NY, 1979.
[47]
Eason, G., Veitch, A., Nisbet, R., and Turnbull, F. The theory of backscattering of light by blood. Journal of Physics 11 (1978), 1463--1479.
[48]
Everett, M., Yeargers, E., Sayre, R., and Olsen, R. Penetration of epidermis by ultraviolet rays. Photochemistry and Photobiology 5 (1966), 533--542.
[49]
Farell, T., Patterson, M., and Wilson, B. A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Medical Physics 19 (1992), 879--888.
[50]
Feynman, R. The Character of Physical Law. The Modern Library, New York, NY, 1994.
[51]
Fitzpatrick, T., and Bolognia, J. Human melanin pigmentation: role in pathogenesis of cutaneous melanoma. In Melanin: Its Role in Human Photoprotection (Overland Park, Kansas, USA, 1995), M. C. L. Zeise and T. Fitzpatrick, Eds., Valdenmar Publishing Company, pp. 177--182.
[52]
Flewelling, R. Noninvasive optical monitoring. In The Biomedical Engineering Handbook (Boca Raton, FL, USA, 1981), J. Bronzino, Ed., IEEE Press, pp. 1--11. Section 86.
[53]
Flock, S. T., Patterson, M. S., Wilson, B. C., and Wyman, D. R. Monte Carlo modeling of light propagation in highly scattering tissues - I: Model predictions and comparison with diffusion theory. IEEE Transactions on Biomedical Engineering 36, 12 (December 1989), 1162--1168.
[54]
Foley, J., van Dam, A., Feiner, S., and Hughes, J. Computer Graphics: Principles and Practice, second ed. Addison-Wesley Publishing Company, Reading, Massachusetts, 1990.
[55]
Fournier, A. From local to global illumination and back. In Rendering Techniques'95 (Proceedings of the Sixth Eurographics Rendering Workshop) (Dublin, June 1995), P. M. Hanrahan and W. Purgathofer, Eds., Springer-Verlag, pp. 127--136.
[56]
Fretterd, R., and Longini, R. Diffusion dipole source. Journal of the Optical Society of America 63, 3 (1973), 336--337.
[57]
Furutso, K. Diffusion equation derived from space-time transport equation. Journal of the Optical Society of America 70 (1980), 360.
[58]
Gerald, C., and Wheatley, P. Applied Numerical Analysis, 6th ed. Addison-Wesley, Reading, Massachusetts, 1997.
[59]
Glassner, A. Principles of Digital Image Synthesis. Morgan Kaufmann Publishers, Inc, San Francisco, 1995.
[60]
Greenberg, D. 1987 Steven A. Coons Award Lecture. Computer Graphics 22, 1 (February 1988), 7--14.
[61]
Greenberg, D., Arvo, J., Lafortune, E., Torrance, K., Ferwerda, J., Walter, B., Trumbore, B., Shirley, P., Pattanaik, S., and Foo, S. A framework for realistic image synthesis. In SIGGRAPH, Annual Conference Series (1997), pp. 477--494.
[62]
Groenhuis, R., Fewerda, H., and Bosch, J. Scattering and absorption of turbid materials determined from reflection measurements. 1: Theory. Applied Optics 22, 16 (August 1983), 2456--2462.
[63]
Hanrahan, P., and Krueger, W. Reflection from layered surfaces due to subsurface scattering. In SIGGRAPH, Annual Conference Series (August 1993), pp. 165--174.
[64]
Haro, A., Guenter, B., and Essa, I. Real-time, photo-realistic, physically based rendering of fine scale human skin structure. In Rendering Techniques'2001 (Proceedings of the 12th Eurographics Rendering Workshop) (London, June 2001), P. M. Hanrahan and W. Purgathofer, Eds., Springer-Verlag, pp. 53--62.
[65]
Hecht, E., and Zajac, A. Optics. Addison-Wesley, Reading, Massachusetts, 1974.
[66]
Henyey, L., and Greenstein, J. Diffuse radiation in the galaxy. Astrophysics Journal 93 (1941), 70--83.
[67]
Hirko, R., Fretterd, R., and Longini, R. Application of the diffusion dipole to modelling the optical characteristics of blood. Medical and Biological Engineering 3 (March 1975), 192--195.
[68]
Hunter, R., and Harold, R. The Measurement of Appearance, second ed. John Wiley & Sons, New York, 1987.
[69]
Igarashi, T., Nishino, K., and Nayar, S. The appearance of human skin: a survey. Foundations and Trends in Computer Graphics and Vision 3, 1 (2007), 1--95.
[70]
Ishimaru, A. Wave Propagation and Scattering in Random Media, 2nd ed., vol. 1. IEEE Press, New York, 1978.
[71]
Jacquemoud, S., and Ustin, S. Leaf optical properties: A state of the art. In 8th International Symposium of Physical Measurements & Signatures in Remote Sensing (Aussois, France, January 2001), CNES, pp. 223--332.
[72]
Jacquemoud, S., Ustin, S., Verdebout, J., Schmuck, G., Andreoli, G., and Hosgood, B. Estimating leaf biochemistry using prospect leaf optical properties model. Remote Sensing of Environment 56 (1996), 194--202.
[73]
Jacques, S. Origins of tissue optical properties in the uva visible and nir regions. OSA TOPS on Advances in Optical Imaging and Photon Migration 2 (1996), 364--369.
[74]
Jacques, S. Optical absorption of melanin. Tech. rep., Oregon Medical Laser Center, Portland, Oregon, U.S.A, 2001.
[75]
Jacques, S., Alter, C., and Prahl, S. Angular dependence of HeNe laser light scattering by human dermis. Lasers in Life Sciences 1, 4 (1987), 309--333.
[76]
Jensen, H., and Buhler, J. A rapid hierarchical rendering technique for translucent materials. In SIGGRAPH, Annual Conference Series (July 2002), pp. 576--581.
[77]
Jensen, H., and Buhler, J. Digital face cloning. In SIGGRAPH'2003 Technical Sketches (Overland Park, Kansas, USA, 2003), M. C. L. Zeise and T. Fitzpatrick, Eds., Valdenmar Publishing Company, pp. 11--22. 2223b.
[78]
Jensen, H., Marschner, S., Levoy, M., and Hanrahan, P. A practical model for subsurface light transport. In SIGGRAPH, Annual Conference Series (August 2001), pp. 511--518.
[79]
Jin, Z., and Stammes, K. Radiative transfer in nonuniformly refracting layered media: atmosphere-ocean system. Applied Optics 33, 3 (January 1994), 431--442.
[80]
Kajiya, J., and Kay., T. Rendering fur with three dimensional textures. Computer Graphics (SIGGRAPH Proceedings) 23, 3 (July 1989), 271--280.
[81]
Kattawar, G. A three-parameter analytic phase function for multiple scattering calculations. Journal of Quantitative Spectroscopy and Radiative Transfer 15 (1975), 839--849.
[82]
Kelfkens, G., and van der Leun, J. Skin temperature changes after irradiation with UVB or UVC: implications for the mechanism underlying ultraviolet erythema. Physics in Medicine and Biology 34, 5 (1989), 599--608.
[83]
Kimmel, B., and Baranoski, G. A novel approach for simulating light interaction with particulate materials: application to the modeling of sand spectral properties. Optics Express 15, 15 (2007), 9755--9777.
[84]
Kolb, C. Rayshade User's Guide and Reference Manual. Princeton University, January 1992.
[85]
Kollias, N. The spectroscopy of human melanin pigmentation. In Melanin: Its Role in Human Photoprotection (Overland Park, Kansas, USA, 1995), M. C. L. Zeise and T. Fitzpatrick, Eds., Valdenmar Publishing Company, pp. 31--38.
[86]
Krishnaswamy, A. BioSpec: A biophysically-based spectral model of light interaction with human skin. Master's thesis, School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada, 2005.
[87]
Krishnaswamy, A., and Baranoski, G. A biophysically-based spectral model of light interaction with human skin. Computer Graphics Forum (EUROGRAPHICS Proceedings) 23, 3 (2004), 331--340.
[88]
Krishnaswamy, A., Baranoski, G., and Rokne, J. G. Improving the reliability/cost ratio of goniophotometric measurements. Journal of Graphics Tools 9, 3 (2004), 31--51.
[89]
Kubelka, P., and Munk, F. Ein beitrag zur optik der farbanstriche. Zurich Tech. Physik 12 (1931), 543.
[90]
Lam, M., and Baranoski, G. A predictive light transport model for the human iris. Computer Graphics Forum (EUROGRAPHICS Proceedings) 25, 3 (2006), 359--368.
[91]
Lee, R., Mathews-Roth, M., Pathak, M., and Parrish, J. The detection of carotenoid pigments in human skin. Journal of Investigative Dermatology 64 (1975), 175--177.
[92]
Lewis, G. The conservation of photons. Nature 2981, 118 (December 1926), 874--875.
[93]
Longhurst, R. Geometrical and Physical Optics, third ed. Longman Group Limited, London, 1973.
[94]
MacAdam, D. Color Measurements Theme and Variations. Springer Verlag, Berlin, 1981.
[95]
Marschner, S., Westin, S. H., Lafortune, E., Torrance, K., and Greenberg, D. Image-based brdf measurement. Tech. Rep. PCG-99-1, Program of Computer Graphics, Cornell University, USA, January 1999.
[96]
Marschner, S., Westin, S. H., Lafortune, E., Torrance, K., and Greenberg, D. Image-based brdf measurement including human skin. In Rendering Techniques'1999 (Proceedings of the 10th Eurographics Rendering Workshop) (Granada, June 1999), D. Lischinski and G. W. Larson, Eds., Springer-Verlag, pp. 119--130.
[97]
Marschner, S., Westin, S. H., Lafortune, E., Torrance, K., and Greenberg, D. Reflectance measurements of human skin. Tech. Rep. PCG-99-2, Program of Computer Graphics, Cornell University, USA, January 1999.
[98]
McCartney, E. Optics of the Atmosphere: Scattering by Molecules and Particles. John Wiley & Sons Inc., 1976.
[99]
Meglinsky, I., and Matcher, S. Modelling the sampling volume for skin blood oxygenation. Medical & Biological Engineering & Computing 39 (2001), 44--49.
[100]
Meglinsky, I., and Matcher, S. Computer simulation of the skin reflectance spectra. Computer Methods and Programs in Biomedicine 70 (2003), 179--186.
[101]
Menzel, D. Selected Papers on the Transfer of Radiation. Dover Publications, New York, 1966.
[102]
Metropolis, N., and Ulam, S. The Monte Carlo method. Journal of the American Statistical Association 44, 247 (September 1949), 335--341.
[103]
Meyer-Arendt, J. Introduction to Modern and Classical Optics. Prentice-Hall, New Jersey, 1984.
[104]
Mobley, C. Light and Water: Radiative Transfer in Natural Waters. Academic Press, San Diego, 1994.
[105]
Mourant, J., Freyer, J., Hielscher, A., Eick, A., Shen, D., and Johnson, T. Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Applied Optics 37, 16 (June 1998), 3586--3593.
[106]
Nakai, H., Manabe, Y., and Inokuchi, S. Simulation analysis of spectral distributions of human skin. In 14th International Conference on Pattern Recognition (1998), pp. 1065--1067.
[107]
Ng, C., and Li, L. A multi-layered reflection model of natural human skin. In Computer Graphics International 2001 (Hong Kong, July 2001), pp. 249--256.
[108]
Nicodemus, F., Richmond, J., Hsia, J., Ginsberg, I., and Limperis, T. Geometrical considerations and nomenclature for reflectance. In Physics-Based Vision Principles and Practice: Radiometry (Boston, 1992), L. Wolff, S. Shafer, and G. Healey, Eds., Jones and Bartlett Publishers, pp. 94--145.
[109]
Nilsson, S. Skin temperature over an artificial heat source implanted in man. Physics in Medicine and Biology 20, 3 (1975), 366--383.
[110]
Nischik, M., and Forster, C. Analysis of skin erythema using true-color images. IEEE Transactions on Medical Imaging 16, 6 (December 1997), 711--716.
[111]
Orchard, S. Reflection and transmission of light by diffusing suspensions. Journal of the Optical Society of America 59 (1969), 1584--1597.
[112]
Overhem, R., and Wagner, D. Light and Color. John Wiley & Sons, New York, N.Y., 1982.
[113]
Parsad, D., Wakamatsu, K., Kanwar, A., Kumar, B., and Ito, S. Eumelanin and phaeomelanin contents of depigmented and repigmented skin in vitiligo patients. British Journal of Dermatology 149 (2003), 624--626.
[114]
Pathak, M. Functions of melanin and protection by melanin. In Melanin: Its Role in Human Photoprotection (Overland Park, Kansas, USA, 1995), M. C. L. Zeise and T. Fitzpatrick, Eds., Valdenmar Publishing Company, pp. 125--134.
[115]
Pearce, A., and Sung, K. Maya software rendering: A technical overview. Tech. Rep. AP-M-SWR-01, Alias---Wavefront, Toronto, Canada, 1998.
[116]
Prahl, S. Light Transport in Tissue. PhD thesis, The University of Texas at Austin, TX, USA, December 1988.
[117]
Prahl, S. Optical absorption of hemoglobin. Tech. rep., Oregon Medical Laser Center, Portland, Oregon, U.S.A, 1999.
[118]
Prahl, S., Keijzer, M., Jacques, S., and Welch, A. A Monte Carlo model of light propagation in tissue. SPIE Institute Series IS 5 (1989), 102--111.
[119]
Prahl, S., van Gemert, M., and Welch, A. Determining the optical properties of turbid media using the adding-doubling method. Applied Optics 32, 4 (1993), 559--568.
[120]
Preisendorfer, R. Radiative Transfer on Discrete Spaces. Pergamon, New York, N.Y., 1965.
[121]
Premoze, S., Ashikhmin, M., and Shirley, P. Path integration for light transport in volumes. In Eurographics Symposium on Rendering (2003), P. Christensen and D. Cohen-Or, Eds., pp. 75--84.
[122]
Rodriguez, J., Yaroslavsky, I., Yaroslavsky, A., Battarbee, H., and Tuchin, V. Time-resolved imaging in diffusive media. In Handbook of Optical Biomedical Diagnostics (Bellingham, WA, USA, 2002), V. Tuchin, Ed., SPIE Press, pp. 357--404.
[123]
Ruhle, W., and Wild, A. The intensification of absorbance changes in leaves by light-dispersion. differences between high-light and low-light leaves. Planta 146 (1979), 551--557.
[124]
Saidi, I. Transcutaneous optical measurement of hyperbilirubinemia in neonates. PhD thesis, Rice University, Houston, Texas, USA, 1994.
[125]
Sardar, D., and Levy, L. Optical properties of whole blood. Lasers in Medical Science 13 (1998), 106--111.
[126]
Schmitt, J., Zhou, G., Walker, E., and Wall, R. Multilayer model of photon diffusion in skin. Journal of the Optical Society of America 7, 11 (November 1990), 2141--2153.
[127]
Schuster, A. Radiation through foggy atmosphere. Astrophysical Journal 21, 1 (January 1905), 1--22.
[128]
Sears, F., Zemansky, M., and Young, H. College Physics Part I Mechanics, Heat and Sound, fourth ed. Addison-Wesley Publishing Company, Reading, Massachusetts, 1974.
[129]
Seeliger, H. The photometry of diffusely reflecting surfaces. Koniglich Bayerische Akademie der Wissenschaften 18 (1888), 201--248. (in German).
[130]
Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junkins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T., and Hanrahan, P. Larrabee: a many-core x86 architecture for visual computing. ACM Transactions on Graphics 27, 3 (2008), 1--15.
[131]
Shi, T., and DiMarzio, C. Multispectral method for skin imaging: development and validation. Applied Optics 46, 36 (2007), 8619--8626.
[132]
Shimada, M., Yamada, Y., Itoh, M., and Yatagai, T. Melanin and blood concentration in human skin studied by multiple regression analysis: assessment by Monte Carlo simulation. Physics in Medicine and Biology 46 (2001), 2397--2406.
[133]
Shirley, P. Physically based lighting calculations for computer graphics: A modern perspective. In Eurographics Workshop on Photosimulation, Realism and Physics in Computer Graphics (Amsterdam, June 1990), K. Bouatouch and C. Bouville, Eds., Elsevier, pp. 67--81.
[134]
Shirley, P. Physically Based Lighting for Computer Graphics. PhD thesis, Dept. of Computer Science, University of Illinois, November 1990.
[135]
Shirley, P., Baranoski, G., Cho, B., Defrancesco, A., Gupta, V., Jones, B., Kamath, R., Kim, J., Kim, K., Loos, T., Ma, H., Meyer, C., Rusinov, D., Sampson, S., Vogl, G., Winnicka, B., and Zimmerman, K. The GG Library Reference Manual. Department of Computer Science, Indiana University, Bloomington, Indiana, USA, 1993.
[136]
Shirley, P., and Sung, K. A ray tracing framework for global illumination systems. In Graphics Interface (Toronto, 1991), Canadian Information Processing Society, pp. 117--128.
[137]
Simpson, C., Kohl, M., Essenpreis, M., and Cope, M. Near infrared optical properties of ex-vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Physics in Medicine and Biology 43 (1998), 2465--2478.
[138]
Smith, H., and Morgan, D. The spectral characteristics of the visible radiation incident upon the surface of the earth. In Plants and the Daylight Spectrum (London, January 1981), H. Smith, Ed., Academic Press, pp. 3--20.
[139]
Stam, J. An illumination model for a skin layer bounded by rough surfaces. In Rendering Techniques'2001 (Proceedings of the 12th Eurographics Rendering Workshop) (London, June 2001), P. M. Hanrahan and W. Purgathofer, Eds., Springer-Verlag, pp. 39--52.
[140]
Stamnes, K., and Conklin, P. A new multi-layer discrete ordinate approach to radiative transfer in vertically inhomogeneous atmospheres. Journal of Quantum Spectroscopy and Radiative Transfer 31, 3 (1984), 273--282.
[141]
Stanzl, K., and Zastrow, L. Melanin: an effective photoprotectant against UV-A rays. In Melanin: Its Role in Human Photoprotection (Overland Park, Kansas, USA, 1995), M. C. L. Zeise and T. Fitzpatrick, Eds., Valdenmar Publishing Company, pp. 59--63.
[142]
Steinke, J., and Shepherd, A. Diffusion model of the optical absorbance of whole blood. Journal of the Optical Society of America 5, 6 (1988), 813--822.
[143]
Störring, M. Computer Vision and Human Skin Color. PhD thesis, Faculty of Engineering and Science, Aalborg University, Denmark, 2004.
[144]
Su, Y., Wang, W., Xu, K., and Jiang, C. The optical properties of skin. In Optics in Health Care and Biomedical Optics: Diagnostics and Treatment (2002), SPIE, vol. 4916, pp. 299--304.
[145]
Swerdlow, J. Unmasking skin. National Geographic (November 2002), 36--63.
[146]
Talreja, P., Kasting, G., Kleene, N., Pickens, W., and Wang, T. Visualization of the lipid barrier and measurement of lipid pathlength in human stratum corneum. AAPS PharmSCi 3, 2 (2001), 1--9.
[147]
Tessendorf, J., and Wilson, D. Impact of multiple scattering on simulated infrared clod scene images. In SPIE. Characterization and Propagation of Sources and Backgrounds (1994), P. Christensen and D. Cohen-Or, Eds., pp. 75--84. 2223b.
[148]
Thalmann, N., Kalra, P., Lévêque, J., Bazin, R., Batisse, D., and Querleux, B. A computational skin model: fold and wrinkle formation. IEEE Transactions on Information Technology in Biomedicine 6, 4 (2002), 317--323.
[149]
Thody, A., Higgins, E., Wakamatsu, K., Ito, S., Burchill, S., and Marks, J. Pheomelanin as well as eumelanin is present in human dermis. Journal of Investigative Dermatology 97 (1991), 340--344.
[150]
Torrance, K., and Sparrow, E. Theory for off-specular reflection from roughned surfaces. Journal of the Optical Society of America 57, 9 (1967), 1105--1114.
[151]
Trowbridge, T., and Reitz, K. Average irregularity representation of a rough surface for ray reflection. Journal of the Optical Society of America 65, 5 (May 1975), 531--536.
[152]
Tsumura, N., Kawabuchi, M., Haneishi, H., and Miyabe, Y. Mapping pigmentation in human skin by multivisible-spectral imaging by inverse optical scattering technique. In IS&T/SID Eighth Color Imaging Conference (2000), pp. 81--84.
[153]
Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S., Hori, K., and Miyake, Y. Image-based skin color and texture analysis/synthesis by extracting hemoglobin and melanin information in the skin. In SIGGRAPH, Annual Conference Series (2003).
[154]
Tuchin, V. Tissue Optics Light Scattering Methods and Instruments for Medical Diagnosis. The International Society for Optical Engineering, Bellingham, WA, USA, 2000.
[155]
Tuchin, V., Utz, S., and Yaroslavsky, I. Tissue optics, light distribution, and spectroscopy. Optical Engineering 33 (1994), 3178--3188.
[156]
Uesugi, A., Irvine, W., and Kawata, Y. Formation of absorption spectra by diffuse reflection from a semi-infinite planetary atmosphere. Journal of Quantitative Spectroscopy and Radiative Transfer 11 (1971), 797--808.
[157]
van de Hulst, H. Multiple Light Scattering: Tables, Formulas, and Applications, vol. 1. Academic Press, New York, 1980.
[158]
van de Hulst, H. Multiple Light Scattering: Tables, Formulas, and Applications, vol. 2. Academic Press, New York, 1980.
[159]
van de Hulst, H. Light Scattering by Small Particles, 2nd ed. Dover Publications Inc., New York, 1981.
[160]
van der Leun, J. Ultraviolet Erythema. PhD thesis, University of Utrecht, The Netherlands, 1966.
[161]
van Gemert, M., Jacques, S., Sterenborg, H., and Star, W. Skin optics. IEEE Transactions on Biomedical Engineering 36, 12 (1989), 1146--1154.
[162]
van Gemert, M., and Star, W. Relations between the Kubelka-Munk and the transport equation models for anisotropic scattering. Laser in the Life Sciences 1, 4 (1987), 287--298.
[163]
van Gemert, M., Welch, A., and Star, W. Tissue optics for a slab geometry in diffusion approximation. Laser in the Life Sciences 2 (1987), 295--302.
[164]
van Ginneken, B., Stavridi, M., and Koenderink, J. Diffuse and specular reflectance from rough surfaces. Applied Optics 37, 1 (1998), 130--139.
[165]
Ventura, B., Lemerle, C., Michalodimitrakis, K., and Serrano, L. From in vivo to in silico biology and back. Nature 443 (2006), 527--553.
[166]
Vogelmann, T. Plant tissue optics. Annual Review of Plant Physiology and Plant Molecular Biology 44 (1993), 231--251.
[167]
Vrhel, M., Gershon, R., and Iwan, L. Measurement and analysis of object reflectance spectra. Color Research and Application 19, 1 (1994), 4--9.
[168]
Wan, S., Anderson, R., and Parrish, J. Analytical modeling for the optical properties of the skin with in vitro and in vivo appplications. Photochemistry and Photobiology 34 (1981), 493--499.
[169]
Wang, L. Rapid modeling of diffuse reflectance in turbid slabs. Journal of the Optical Society of America 15, 4 (1998), 937--944.
[170]
Wang, L., and Jacques, S. Hybrid method of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. Optical Society of America 10, 8 (1995), 1746--1752.
[171]
Wang, L., Jacques, S., and Zheng, L. MCML - Monte Carlo modelling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine 47 (1995), 131--146.
[172]
Williamson, S., and Cummins, H. Light and Color in Nature and Art. John Wiley & Sons, New York, 1983.
[173]
Wilson, B., and Adam, G. A Monte Carlo model for the absorption and flux distributions of light in tissue. Medical Physics 10 (1983), 824--830.
[174]
Witt, A. Multiple scattering in reflection nebulae. I. a Monte Carlo approach. The Astrophysical Journal Supplement Series 15 (September 1977), 1--6.
[175]
Yaroslavsky, A., Priezzhev, A., Rodriguez, J., Yaroslavsky, I., and Battarbee, H. Optics of blood. In Handbook of Optical Biomedical Diagnostics (Bellingham, WA, USA, 2002), V. Tuchin, Ed., SPIE Press, pp. 169--216.
[176]
Yaroslavsky, A., Utz, S., Tatarintsev, S., and Tuchin, V. Angular scattering properties of human epidermal layers. In Human Vision and Electronic Imaging VI (1994), SPIE, vol. 2100, pp. 38--41.
[177]
Yoon, G. Absorption and Scattering of Laser Light in Biological Media - Mathematical Modeling and Methods for Determining Optical Properties. PhD thesis, University of Texas at Austin, USA, 1988.
[178]
Yoon, G., Prahl, S., and Welch, A. Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media. Applied Optics 28, 12 (1989), 2250--2255.
[179]
Yoon, G., Welch, A., Motamedi, M., and van Gemert, M. Development and application of three-dimensional light distribution model for laser irradiated tissue. IEEE Journal of Quantum Electronics QE-23 (1987), 1721--1733.
[180]
Zonios, G., Bykowsky, J., and Kollias, N. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy. Journal of Investigative Dermatology 117, 6 (2001), 1452--1457.

Cited By

View all
  • (2020)MobiEye: turning your smartphones into a ubiquitous unobtrusive vital sign monitoring systemCCF Transactions on Pervasive Computing and Interaction10.1007/s42486-020-00033-32:2(97-112)Online publication date: 29-Jun-2020
  • (2015)Non-invasive estimation of skin thickness from hyperspectral imaging and validation using echographyComputers in Biology and Medicine10.1016/j.compbiomed.2014.12.01057:C(173-181)Online publication date: 1-Feb-2015
  • (2010)Scales and Scale‐like StructuresComputer Graphics Forum10.1111/j.1467-8659.2010.01774.x29:5(1653-1660)Online publication date: 21-Sep-2010
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGGRAPH Asia '08: ACM SIGGRAPH ASIA 2008 courses
December 2008
2261 pages
ISBN:9781450379243
DOI:10.1145/1508044
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 December 2008

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

SA08
Sponsor:
SA08: SIGGRAPH ASIA 2008
December 10 - 13, 2008
Singapore

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)9
  • Downloads (Last 6 weeks)1
Reflects downloads up to 03 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2020)MobiEye: turning your smartphones into a ubiquitous unobtrusive vital sign monitoring systemCCF Transactions on Pervasive Computing and Interaction10.1007/s42486-020-00033-32:2(97-112)Online publication date: 29-Jun-2020
  • (2015)Non-invasive estimation of skin thickness from hyperspectral imaging and validation using echographyComputers in Biology and Medicine10.1016/j.compbiomed.2014.12.01057:C(173-181)Online publication date: 1-Feb-2015
  • (2010)Scales and Scale‐like StructuresComputer Graphics Forum10.1111/j.1467-8659.2010.01774.x29:5(1653-1660)Online publication date: 21-Sep-2010
  • (2009)Biophysically-based appearance modelsACM SIGGRAPH ASIA 2009 Courses10.1145/1665817.1665818(1-79)Online publication date: 16-Dec-2009

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media