Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1576702.1576712acmconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Fast algorithms for differential equations in positive characteristic

Published: 28 July 2009 Publication History

Abstract

We address complexity issues for linear differential equations in characteristic p >;0: resolution and computation of the p-curvature. For these tasks, our main focus is on algorithms whose complexity behaves well with respect to p. We prove bounds linear in p on the degree of polynomial solutions and propose algorithms for testing the existence of polynomial solutions in sublinear time Õ(p1/2), and for determining a whole basis of the solution space in quasi-linear time Õ(p); the Õ notation indicates that we hide logarithmic factors. We show that for equations of arbitrary order, the p-curvature can be computed in subquadratic time Õ(p1.79), and that this can be improved to O(log(p)) for first order equations and to Õ(p) for classes of second order equations.

References

[1]
S. A. Abramov, M. Bronstein, and M. Petkovšek. On polynomial solutions of linear operator equations. In ISSAC'95, pages 290--296. ACM Press, 1995.
[2]
S. J. Berkowitz. On computing the determinant in small parallel time using a small number of processors. Inform. Process. Lett., 18(3):147--150, 1984.
[3]
A. Bostan. Algorithmique efficace pour des opérations de base en calcul formel. PhD thesis, École polytechnique, 2003.
[4]
A. Bostan, S. Boukraa, S. Hassani, J. M. Maillard, J. A. Weil, and N. Zenine. Globally nilpotent differential operators and the square Ising model. J. Phys. A: Math. Theor., 42(12), 2009.
[5]
A. Bostan, F. Chyzak, and N. Le Roux. Products of ordinary differential operators by evaluation and interpolation. In ISSAC'08, pages 23--30. ACM, 2008.
[6]
A. Bostan, T. Cluzeau, and B. Salvy. Fast algorithms for polynomial solutions of linear differential equations. In ISSAC'05, pages 45--52. ACM Press, 2005.
[7]
A. Bostan and M. Kauers. The complete generating function for Gessel walks is algebraic. In preparation.
[8]
A. Bostan and M. Kauers. Automatic classification of restricted lattice walks. In FPSAC'09, to appear.
[9]
R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. J. ACM, 25(4):581--595, 1978.
[10]
D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Inform., 28(7):693--701, 1991.
[11]
T. Cluzeau. Factorization of differential systems in characteristic p. In ISSAC'03, pages 58--65. ACM Press, 2003.
[12]
T. Cluzeau. Algorithmique modulaire des équations différentielles linéaires. PhD thesis, Univ. Limoges, 2004.
[13]
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comp., 9(3):251--280, 1990.
[14]
B. Dwork. Lectures on p-adic differential equations, volume 253 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York, Heidelberg, Berlin, 1982.
[15]
B. Dwork. Differential operators with nilpotent p-curvature. Amer. J. Math., 112(5):749--786, 1990.
[16]
C. M. Fiduccia. An efficient formula for linear recurrences. SIAM Journal on Computing, 14(1):106--112, 1985.
[17]
J. von zur Gathen and J. Gerhard. Fast algorithms for Taylor shifts and certain difference equations. In ISSAC'97, pages 40--47. ACM, 1997.
[18]
J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 1999.
[19]
T. Honda. Algebraic differential equations. In Symposia Mathematica, Vol. XXIV, pp. 169--204. Academic Press, 1981.
[20]
N. M. Katz. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin. Publ. Math. Inst. Hautes Études Sci., (39):175--232, 1970.
[21]
N. M. Katz. A conjecture in the arithmetic theory of differential equations. Bull. Soc. Math. France, (110):203--239, 1982.
[22]
A. Schönhage and V. Strassen. Schnelle Multiplikation groß er Zahlen. Computing, 7:281--292, 1971.
[23]
J. van der Hoeven. FFT-like multiplication of linear differential operators. J. Symb. Comp., 33(1):123--127, 2002.
[24]
M. van der Put. Differential equations in characteristic p. Compositio Mathematica, 97:227--251, 1995.
[25]
M. van der Put. Reduction modulo p of differential equations. Indag. Mathem., 7(3):367--387, 1996.
[26]
M. van der Put and M. Singer. Galois theory of linear differential equations. Springer, 2003.
[27]
J. F. Voloch. A note on the arithmetic of differential equations. Indag. Mathem., 11(44):617--621, 2000.

Cited By

View all
  • (2024)Algebraic solutions of linear differential equations: An arithmetic approachBulletin of the American Mathematical Society10.1090/bull/183561:4(609-658)Online publication date: 15-Aug-2024
  • (2023)Fast computation of the N-th term of a q-holonomic sequence and applicationsJournal of Symbolic Computation10.1016/j.jsc.2022.07.008115:C(96-123)Online publication date: 1-Mar-2023
  • (2022)Intrinsic Approach to Galois Theory of 𝑞-Difference EquationsMemoirs of the American Mathematical Society10.1090/memo/1376279:1376Online publication date: Sep-2022
  • Show More Cited By

Index Terms

  1. Fast algorithms for differential equations in positive characteristic

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISSAC '09: Proceedings of the 2009 international symposium on Symbolic and algebraic computation
    July 2009
    402 pages
    ISBN:9781605586090
    DOI:10.1145/1576702
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 July 2009

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. p-curvature
    2. algorithms
    3. complexity
    4. differential equations
    5. polynomial solutions

    Qualifiers

    • Research-article

    Conference

    ISSAC '09
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 08 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Algebraic solutions of linear differential equations: An arithmetic approachBulletin of the American Mathematical Society10.1090/bull/183561:4(609-658)Online publication date: 15-Aug-2024
    • (2023)Fast computation of the N-th term of a q-holonomic sequence and applicationsJournal of Symbolic Computation10.1016/j.jsc.2022.07.008115:C(96-123)Online publication date: 1-Mar-2023
    • (2022)Intrinsic Approach to Galois Theory of 𝑞-Difference EquationsMemoirs of the American Mathematical Society10.1090/memo/1376279:1376Online publication date: Sep-2022
    • (2020)Computing the N-th term of a q-holonomic sequenceProceedings of the 45th International Symposium on Symbolic and Algebraic Computation10.1145/3373207.3404060(46-53)Online publication date: 20-Jul-2020
    • (2017)Algorithms for Structured Linear Systems Solving and Their ImplementationProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087659(205-212)Online publication date: 23-Jul-2017
    • (2016)Computation of the Similarity Class of the p-CurvatureProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930897(111-118)Online publication date: 20-Jul-2016
    • (2015)A Fast Algorithm for Computing the P-curvatureProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756674(69-76)Online publication date: 24-Jun-2015
    • (2014)A fast algorithm for computing the characteristic polynomial of the p-curvatureProceedings of the 39th International Symposium on Symbolic and Algebraic Computation10.1145/2608628.2608650(59-66)Online publication date: 23-Jul-2014
    • (2012)Power series solutions of singular (q)-differential equationsProceedings of the 37th International Symposium on Symbolic and Algebraic Computation10.1145/2442829.2442848(107-114)Online publication date: 22-Jul-2012
    • (2012)Enumeration and asymptotics of restricted compositions having the same number of partsDiscrete Applied Mathematics10.1016/j.dam.2011.12.011160:18(2542-2554)Online publication date: 1-Dec-2012

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media