Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

User-assisted intrinsic images

Published: 01 December 2009 Publication History

Abstract

For many computational photography applications, the lighting and materials in the scene are critical pieces of information. We seek to obtain intrinsic images, which decompose a photo into the product of an illumination component that represents lighting effects and a reflectance component that is the color of the observed material. This is an under-constrained problem and automatic methods are challenged by complex natural images. We describe a new approach that enables users to guide an optimization with simple indications such as regions of constant reflectance or illumination. Based on a simple assumption on local reflectance distributions, we derive a new propagation energy that enables a closed form solution using linear least-squares. We achieve fast performance by introducing a novel downsampling that preserves local color distributions. We demonstrate intrinsic image decomposition on a variety of images and show applications.

Supplementary Material

Supplemental material. (130-bousseau.zip)

References

[1]
Agrawal, A., Raskar, R., and Chellappa, R. 2006. Edge suppression by gradient field transformation using cross-projection tensors. In CVPR, 2301--2308.
[2]
Barrow, H., and Tenenbaum, J. 1978. Recovering intrinsic scene characteristics from images. Computer Vision Systems.
[3]
Briggs, W. L., Henson, V. E., and McCormick, S. F. 2000. A multigrid tutorial (2nd ed.). Society for Industrial and Applied Mathematics.
[4]
Buatois, L., Caumon, G., and Lévy, B. 2007. Concurrent number cruncher: An efficient sparse linear solver on the gpu. In High Performance Computation Conference.
[5]
Chuang, Y.-Y., Curless, B., Salesin, D. H., and Szeliski, R. 2001. A bayesian approach to digital matting. In CVPR.
[6]
Fang, H., and Hart, J. C. 2004. Textureshop: Texture synthesis as a photograph editing tool. ACM TOG (proc. of SIGGRAPH 2004) 23, 3, 354--359.
[7]
Fattal, R. 2008. Single image dehazing. ACM TOG (proc. of SIGGRAPH 2008) 27, 3, 72.
[8]
Finlayson, G. D., Hordley, S. D., and Drew, M. S. 2002. Removing shadows from images. In ECCV.
[9]
Finlayson, G. D., Drew, M. S., and Lu, C. 2004. Intrinsic images by entropy minimization. In ECCV, 582--595.
[10]
Horn, B. K. 1986. Robot Vision. MIT Press.
[11]
Hsu, E., Mertens, T., Paris, S., Avidan, S., and Durand, F. 2008. Light mixture estimation for spatially varying white balance. ACM TOG (proc. of SIGGRAPH 2008) 27, 3, 70.
[12]
Khan, E., Reinhard, E., Fleming, R., and Bülthoff, H. 2005. Image-based material editing. ACM TOG (proc. of SIGGRAPH 2005) 24, 3, 654--663.
[13]
Land, E. H., and McCann, J. J. 1971. Lightness and retinex theory. Journal of the optical society of America 61, 1.
[14]
Levin, A., and Weiss, Y. 2007. User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans. PAMI 29, 9, 1647--1654.
[15]
Levin, A., Lischinski, D., and Weiss, Y. 2004. Colorization using optimization. ACM TOG (proc. of SIGGRAPH 2004) 23, 689--694.
[16]
Levin, A., Lischinski, D., and Weiss, Y. 2008. A closed-form solution to natural image matting. IEEE Trans. PAMI.
[17]
Liu, X., Wan, L., Qu, Y., Wong, T.-T., Lin, S., Leung, C.-S., and Heng, P.-A. 2008. Intrinsic colorization. ACM TOG (proc. of SIGGRAPH Asia 2008) 27, 5, 152.
[18]
McCann, J., and Pollard, N. S. 2008. Real-time gradient-domain painting. ACM TOG (Proc. of SIGGRAPH) 27, 3, 93.
[19]
Mohan, A., Tumblin, J., and Choudhury, P. 2007. Editing soft shadows in a digital photograph. IEEE Computer Graphics and Applications 27, 2, 23--31.
[20]
Omer, I., and Werman, M. 2004. Color lines: Image specific color representation. In CVPR, 946--953.
[21]
Shen, L., Tan, P., and Lin, S. 2008. Intrinsic image decomposition with non-local texture cues. In CVPR.
[22]
Shor, Y., and Lischinski, D. 2008. The shadow meets the mask: Pyramid-based shadow removal. Computer Graphics Forum (Proc. of Eurographics) 27, 3.
[23]
Sinha, P., and Adelson, E. 1993. Recovering reflectance and illumination in a world of painted polyhedra. In ICCV, 156--163.
[24]
Tappen, M. F., Freeman, W. T., and Adelson, E. H. 2005. Recovering intrinsic images from a single image. IEEE Trans. PAMI 27, 9.
[25]
Weiss, Y. 2001. Deriving intrinsic images from image sequences. In ICCV, 68--75.
[26]
Wu, T.-P., Tang, C.-K., Brown, M. S., and Shum, H.-Y. 2007. Natural shadow matting. ACM TOG 26, 2, 8.
[27]
Yu, Y., and Malik, J. 1998. Recovering photometric properties of architectural scenes from photographs. In ACM SIGGRAPH 98, 207--217.

Cited By

View all
  • (2024)Generative Portrait Shadow RemovalACM Transactions on Graphics10.1145/368790343:6(1-13)Online publication date: 19-Dec-2024
  • (2024)IntrinsicDiffusion: Joint Intrinsic Layers from Latent Diffusion ModelsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657472(1-11)Online publication date: 13-Jul-2024
  • (2024)CRefNet: Learning Consistent Reflectance Estimation With a Decoder-Sharing TransformerIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333787030:9(6407-6420)Online publication date: Sep-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 28, Issue 5
December 2009
646 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1618452
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 December 2009
Published in TOG Volume 28, Issue 5

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational photography
  2. intrinsic images
  3. reflectance-illumination separation

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)19
  • Downloads (Last 6 weeks)6
Reflects downloads up to 03 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Generative Portrait Shadow RemovalACM Transactions on Graphics10.1145/368790343:6(1-13)Online publication date: 19-Dec-2024
  • (2024)IntrinsicDiffusion: Joint Intrinsic Layers from Latent Diffusion ModelsACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657472(1-11)Online publication date: 13-Jul-2024
  • (2024)CRefNet: Learning Consistent Reflectance Estimation With a Decoder-Sharing TransformerIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.333787030:9(6407-6420)Online publication date: Sep-2024
  • (2024)Separating Shading and Reflectance From Cartoon IllustrationsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.323936430:7(3664-3679)Online publication date: 1-Jul-2024
  • (2024)Feature extraction via 3-D homogeneous attribute decomposition for hyperspectral imagery classificationInternational Journal of Remote Sensing10.1080/01431161.2024.239423445:18(6759-6786)Online publication date: 10-Sep-2024
  • (2024)A general albedo recovery approach for aerial photogrammetric images through inverse renderingISPRS Journal of Photogrammetry and Remote Sensing10.1016/j.isprsjprs.2024.09.001218(101-119)Online publication date: Dec-2024
  • (2024)Photorealistic Object Insertion with Diffusion-Guided Inverse RenderingComputer Vision – ECCV 202410.1007/978-3-031-73030-6_25(446-465)Online publication date: 29-Sep-2024
  • (2023)A Self-Occlusion Aware Lighting Model for Real-Time Dynamic ReconstructionIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.317823729:10(4062-4073)Online publication date: 1-Oct-2023
  • (2023)Neural Fields Meet Explicit Geometric Representations for Inverse Rendering of Urban Scenes2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52729.2023.00809(8370-8380)Online publication date: Jun-2023
  • (2023)Intrinsic ImagingEncyclopedia of Color Science and Technology10.1007/978-3-030-89862-5_414(1007-1011)Online publication date: 28-Sep-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media