Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Illustrating how mechanical assemblies work

Published: 26 July 2010 Publication History

Abstract

How things work visualizations use a variety of visual techniques to depict the operation of complex mechanical assemblies. We present an automated approach for generating such visualizations. Starting with a 3D CAD model of an assembly, we first infer the motions of individual parts and the interactions between parts based on their geometry and a few user specified constraints. We then use this information to generate visualizations that incorporate motion arrows, frame sequences and animation to convey the causal chain of motions and mechanical interactions between parts. We present results for a wide variety of assemblies.

Supplementary Material

JPG File (tp043-10.jpg)
Supplemental material. (058.zip)
motionvis_sig10.mov - paper video
MP4 File (tp043-10.mp4)

References

[1]
Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., and Tversky, B. 2003. Designing effective step-by-step assembly instructions. Proc. ACM SIGGRAPH, 828--837.
[2]
Amerongen, C. V. 1967. The Way Things Work: An Illustrated Encyclopedia of Technology. Simon and Schuster.
[3]
Assa, J., Caspi, Y., and Cohen-Or, D. 2005. Action synopsis: pose selection and illustration. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 667--676.
[4]
Benkö, P., Martin, R. R., and Várady, T. 2001. Algorithms for reverse engineering boundary representation models. Computer Aided Design 33, 11, 839--851.
[5]
Bouvier-Zappa, S., Ostromoukhov, V., and Poulin, P. 2007. Motion cues for illustration of skeletal motion capture data. In Proceedings of the 5th international symposium on Non-photorealistic animation and rendering, 140.
[6]
Brain, M. 2001. How stuff works. Hungry Minds New York.
[7]
Bruckner, S., and Groller, M. E. 2006. Exploded views for volume data. IEEE Transactions on Visualization and Computer Graphics 12, 5, 1077--1084.
[8]
Burns, M., and Finkelstein, A. 2008. Adaptive cutaways for comprehensible rendering of polygonal scenes. In SIGGRAPH Asia '08: ACM SIGGRAPH Asia 2008 papers, ACM, New York, NY, USA, 1--7.
[9]
Cohen-Steiner, D., Alliez, P., and Desbrun, M. 2004. Variational shape approximation. In Proc. ACM SIGGRAPH, 905--914.
[10]
Collomosse, J., Rowntree, D., and Hall, P. 2005. Rendering cartoon-style motion cues in post-production video. Graphical Models 67, 549--564.
[11]
Cutting, J. E. 2002. Representing motion in a static image: constraints and parallels in art, science, and popular culture. Perception 31, 1165--1193.
[12]
Davidson, J. K., and Hunt, K. H. 2004. Robots and Screw Theory: Applications of Kinematics and Statics to Robotics. Oxford University Press.
[13]
Davis, R. 2007. Magic paper: Sketch-understanding research. Computer 40, 9, 34--41.
[14]
Demarsin, K., Vanderstraeten, D., Volodine, T., and Roose, D. 2007. Detection of closed sharp edges in point clouds using normal estimation and graph theory. Computer Aided Design 39, 4, 276--283.
[15]
Dony, R., Mateer, J., Robinson, J., and Day, M. 2005. Iconic versus naturalistic motion cues in automated reverse storyboarding. In Conf. on Visual Media Production, 17--25.
[16]
Feiner, S., and Seligmann, D. 1992. Cutaways and ghosting: satisfying visibility constraints in dynamic 3D illustrations. The Visual Computer 8, 5, 292--302.
[17]
Fu, H., Cohen-Or, D., Dror, G., and Sheffer, A. 2008. Upright orientation of man-made objects. In ACM Trans. on Graphics (Proc. SIGGRAPH), 1--7.
[18]
Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iWIRES: An analyze-and-edit approach to shape manipulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, #33, 1--10.
[19]
Gelfand, N., and Guibas, L. J. 2004. Shape segmentation using local slippage analysis. In Proc. of Symp. of Geometry Processing, 214--223.
[20]
Goldman, D. B., Curless, B., Salesin, D., and Seitz, S. M. 2006. Schematic storyboarding for video visualization and editing. ACM Trans. on Graphics (Proc. SIGGRAPH) 25, 3, 862--871.
[21]
Hegarty, M., Kriz, S., and Cate, C. 2003. The roles of mental animations and external animations in understanding mechanical systems. Cognition and Instruction 21, 4, 325--360.
[22]
Hegarty, M. 1992. Mental animation: Inferring motion from static displays of mechanical systems. Journal of Experimental Psychology: Learning, Memory, and Cognition 18, 5, 1084--1102.
[23]
Hegarty, M. 2000. Capacity limits in diagrammatic reasoning. In Theory and Application of Diagrams. 335--348.
[24]
Heiser, J., and Tversky, B. 2006. Arrows in comprehending and producing mechanical diagrams. Cognitive Science 30, 581--592.
[25]
Joshi, A., and Rheingans, P. 2005. Illustration-inspired techniques for visualizing time-varying data. In IEEE Visualization, 679--686.
[26]
Kawagishi, Y., Hatsuyama, K., and Kondo, K. 2003. Cartoon blur: Non-photorealistic motion blur. In Proc. of Computer Graphics International, 276--281.
[27]
Kim, B., and Essa, I. 2005. Video-based nonphotorealistic and expressive illustration of motion. Proceedings of Computer Graphics International (CGI 05), 32--35.
[28]
Klein, F., and (translator), M. W. H. 1893. A comparative review of recent researches in geometry. Bull. New York Math. Soc., 215--249.
[29]
Kriz, S., and Hegarty, M. 2007. Top-down and bottom-up influences on learning from animations. International Journal of Human-Computer Studies 65, 11, 911--930.
[30]
Langone, J. 1999. National Geographic's how things work: everyday technology explained. National Geographic.
[31]
Li, W., Ritter, L., Agrawala, M., Curless, B., and Salesin, D. 2007. Interactive cutaway illustrations of complex 3d models. ACM Trans. on Graphics (Proc. SIGGRAPH) 26, 3, #31, 1--11.
[32]
Li, W., Agrawala, M., Curless, B., and Salesin, D. 2008. Automated generation of interactive 3d exploded view diagrams. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3.
[33]
Macaulay, D. 1998. The New Way Things Work.
[34]
Masuch, M., Schlechtweg, S., and Schulz, R. 1999. Speedlines: depicting motion in motionless pictures. In SIGGRAPH Conference abstracts.
[35]
Mayer, R. 2001. Multimedia learning. Cambridge Univ Pr.
[36]
McCloud, S., 1993. Understanding Comics. 1993.
[37]
McGuffin, M. J., Tancau, L., and Balakrishnan, R. 2003. Using deformations for browsing volumetric data. In Proceedings of the 14th IEEE Visualization, 53.
[38]
Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., and Mitra, N. J. 2009. Abstraction of man-made shapes. In ACM Trans. on Graphics (Proc. SIGGRAPH Asia), 1--10.
[39]
Mitra, N. J., Guibas, L., and Pauly, M. 2006. Partial and approximate symmetry detection for 3D geometry. 560--568.
[40]
Narayanan, N., and Hegarty, M. 1998. On designing comprehensible interactive hypermedia manuals. International Journal of Human-Computers Studies 48, 2, 267--301.
[41]
Narayanan, N., and Hegarty, M. 2002. Multimedia design for communication of dynamic information. International journal of human-computer studies 57, 4, 279--315.
[42]
Nienhaus, M., and Döllner, J. 2005. Depicting dynamics using principles of visual art and narrations. IEEE Comput. Graph. Appl. 25, 3, 40--51.
[43]
Seligmann, D., and Feiner, S. 1991. Automated generation of intent-based 3D illustrations. In Proc. ACM SIGGRAPH, ACM, 132.
[44]
Thompson, D. W. 1917. On Growth and Form. Dover Publications.
[45]
Tversky, B., Morrison, J. B., and Betrancourt, M. 2002. Animation: Can it facilitate? International Journal of Human Computer Studies 5, 247--262.
[46]
Viola, I., Kanitsar, A., and Gröller, M. E. 2004. Importance-driven volume rendering. In Proceedings of IEEE Visualization 2004, H. Rushmeier, G. Turk, J. van Wijk, 139--145.
[47]
Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM Transactions on Graphics 28, 5, 112.
[48]
Xu, W., Wang, J., Yin, K., Zhou, K., van de Panne, M., Chen, F., and Guo, B. 2009. Joint-aware manipulation of deformable models. ACM Trans. on Graphics (Proc. SIGGRAPH) 28, 3, #33, 1--10.

Cited By

View all
  • (2024)Magic Furniture: Design Paradigm of Multi-Function AssemblyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325048830:7(4068-4079)Online publication date: Jul-2024
  • (2023)Optimal Design of Robotic Character KinematicsACM Transactions on Graphics10.1145/361840442:6(1-15)Online publication date: 5-Dec-2023
  • (2023)Illustrative Motion Smoothing for Attention Guidance in Dynamic VisualizationsComputer Graphics Forum10.1111/cgf.1483642:3(361-372)Online publication date: 27-Jun-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 29, Issue 4
July 2010
942 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1778765
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 July 2010
Published in TOG Volume 29, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. causal chaining
  2. mechanical assembly
  3. motion depiction
  4. shape analysis
  5. visualization

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)42
  • Downloads (Last 6 weeks)11
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Magic Furniture: Design Paradigm of Multi-Function AssemblyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.325048830:7(4068-4079)Online publication date: Jul-2024
  • (2023)Optimal Design of Robotic Character KinematicsACM Transactions on Graphics10.1145/361840442:6(1-15)Online publication date: 5-Dec-2023
  • (2023)Illustrative Motion Smoothing for Attention Guidance in Dynamic VisualizationsComputer Graphics Forum10.1111/cgf.1483642:3(361-372)Online publication date: 27-Jun-2023
  • (2023)Learning-Based Intrinsic Reflectional Symmetry DetectionIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.317236129:9(3799-3808)Online publication date: 1-Sep-2023
  • (2023)Semi-Weakly Supervised Object Kinematic Motion Prediction2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52729.2023.02081(21726-21735)Online publication date: Jun-2023
  • (2023)SIMBA: An Interactive Sketch-Based Tool for Motion VisualizationHCI International 2023 – Late Breaking Papers10.1007/978-3-031-48044-7_13(181-195)Online publication date: 21-Nov-2023
  • (2022)The 3D Product Model Research Evolution and Future Trends: A Systematic Literature ReviewApplied System Innovation10.3390/asi50200295:2(29)Online publication date: 22-Feb-2022
  • (2022)Kinergy: Creating 3D Printable Motion using Embedded Kinetic EnergyProceedings of the 35th Annual ACM Symposium on User Interface Software and Technology10.1145/3526113.3545636(1-15)Online publication date: 29-Oct-2022
  • (2022)Worst‐Case Rigidity Analysis and Optimization for Assemblies with Mechanical JointsComputer Graphics Forum10.1111/cgf.1449041:2(507-519)Online publication date: 24-May-2022
  • (2021)Motion Planning for Convertible Indoor Scene Layout DesignIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.300568027:12(4413-4424)Online publication date: 1-Dec-2021
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media