Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1833349.1778810acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

Optimizing walking controllers for uncertain inputs and environments

Published: 26 July 2010 Publication History
  • Get Citation Alerts
  • Abstract

    We introduce methods for optimizing physics-based walking controllers for robustness to uncertainty. Many unknown factors, such as external forces, control torques, and user control inputs, cannot be known in advance and must be treated as uncertain. These variables are represented with probability distributions, and a return function scores the desirability of a single motion. Controller optimization entails maximizing the expected value of the return, which is computed by Monte Carlo methods. We demonstrate examples with different sources of uncertainty and task constraints. Optimizing control strategies under uncertainty increases robustness and produces natural variations in style.

    Supplementary Material

    Supplemental material. (073.zip)
    MP4 File (tp097-10.mp4)

    References

    [1]
    Abbeel, P., Coates, A., Quigley, M., and Ng, A. Y. 2007. An application of reinforcement learning to aerobatic helicopter flight. In Adv. NIPS 19. MIT Press, 1--8.
    [2]
    Byl, K., and Tedrake, R. 2009. Metastable walking machines. Int. J. Rob. Res. 28, 8, 1040--1064.
    [3]
    Coros, S., Beaudoin, P., and van de Panne, M. 2009. Robust task-based control policies for physics-based characters. ACM Trans. Graphics 28, 5, 170.
    [4]
    da Silva, M., Abe, Y., and Popović, J. 2008. Interactive simulation of stylized human locomotion. ACM Trans. Graphics 27, 3, 82.
    [5]
    Faisal, A. A., Selen, L. P. J., and Wolpert, D. M. 2008. Noise in the nervous system. Nature Rev. Neurosci. 9, 292--303.
    [6]
    Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proc. SIGGRAPH, ACM, 251--260.
    [7]
    Grzeszczuk, R., and Terzopoulos, D. 1995. Automated learning of muscle-actuated locomotion through control abstraction. In Proc. SIGGRAPH, ACM, 63--70.
    [8]
    Grzeszczuk, R., Terzopoulos, D., and Hinton, G. 1998. NeuroAnimator: Fast neural network emulation and control of physics-based models. In Proc. SIGGRAPH, ACM, 9--20.
    [9]
    Hamilton, A. F. d. C., Jones, K. E., and Wolpert, D. M. 2004. The scaling of motor noise with muscle strength and motor unit in number in humans. Exp. Brain Res. 157, 4, 417--430.
    [10]
    Hansen, N. 2006. The CMA evolution strategy: A comparing review. In Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms. Springer, 75--102.
    [11]
    Harris, C. M., and Wolpert, D. M. 1998. Signal-dependent noise determines motor planning. Nature 394, 780--784.
    [12]
    Hasler, N., Stoll, C., Sunkel, M., Rosenhahn, B., and Seidel, H.-P. 2009. A statistical model of human pose and body shape. Computer Graphics Forum 28, 2, 337--346.
    [13]
    Körding, K. 2007. Decision Theory: What "Should" the Nervous System Do? Science 318, 606--610.
    [14]
    Lee, J., and Lee, K. H. 2006. Precomputing avatar behavior from human motion data. Graphical Models 68, 2, 158--174.
    [15]
    Lee, Y., Lee, S. J., and Popović, Z. 2009. Compact character controllers. ACM Trans. Graphics 28, 5, 169.
    [16]
    Lo, W.-Y., and Zwicker, M. 2008. Real-time planning for parameterized human motion. In Proc. Symposium on Computer Animation, ACM SIGGRAPH/Eurographics, 29--38.
    [17]
    McCann, J., and Pollard, N. S. 2007. Responsive characters from motion fragments. ACM Trans. Graphics 26, 3, 6.
    [18]
    Muico, U., Lee, Y., Popović, J., and Popović, Z. 2009. Contact-aware nonlinear control of dynamic characters. ACM Trans. Graphics 28, 3, 81.
    [19]
    Ng, A. Y., and Jordan, M. I. 2000. PEGASUS: A policy search method for large MDPs and POMDPs. In Proc. UAI, AUAI, 406--415.
    [20]
    Sharon, D., and van de Panne, M. 2005. Synthesis of controllers for stylized planar bipedal walking. In Proc. ICRA, IEEE, 2387--2392.
    [21]
    Sims, K. 1994. Evolving virtual creatures. In Proc. SIGGRAPH, ACM, 15--22.
    [22]
    Sok, K. W., Kim, M., and Lee, J. 2007. Simulating biped behaviors from human motion data. ACM Trans. Graphics 26, 3, 107.
    [23]
    Spall, J. C. 2003. Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley.
    [24]
    Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learning: An Introduction. MIT Press.
    [25]
    Tedrake, R., Zhang, T. W., and Seung, H. S. 2004. Stochastic policy gradient reinforcement learning on a simple 3D biped. In Proc. IROS, vol. 3, IEEE/RSJ, 2849--2854.
    [26]
    Todorov, E. 2004. Optimality principles in sensorimotor control. Nature Neuroscience 7, 9, 907--915.
    [27]
    Treuille, A., Lee, Y., and Popović, Z. 2007. Near-optimal character animation with continuous control. ACM Trans. Graphics 26, 3, 7.
    [28]
    van de Panne, M., and Fiume, E. 1993. Sensor-actuator networks. In Proc. SIGGRAPH, ACM, 335--342.
    [29]
    van de Panne, M., and Lamouret, A. 1995. Guided optimization for balanced locomotion. In Proc. CAS, EG, 165--177.
    [30]
    Wang, J. M., Fleet, D. J., and Hertzmann, A. 2009. Optimizing walking controllers. ACM Trans. Graphics 28, 5, 168.
    [31]
    Yin, K., Loken, K., and van de Panne, M. 2007. SIMBICON: Simple biped locomotion control. ACM Trans. Graphics 26, 3, 105.

    Cited By

    View all
    • (2023)Generating Upper‐Body Motion for Real‐Time Characters Making their Way through Dynamic EnvironmentsComputer Graphics Forum10.1111/cgf.1463341:8(169-181)Online publication date: 20-Mar-2023
    • (2022)Real-Time Locomotion on Soft Grounds With Dynamic FootprintsFrontiers in Virtual Reality10.3389/frvir.2022.8018563Online publication date: 28-Mar-2022
    • (2022)Evaluating query languages and systems for high-energy physics dataProceedings of the VLDB Endowment10.14778/3489496.348949815:2(154-168)Online publication date: 4-Feb-2022
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGGRAPH '10: ACM SIGGRAPH 2010 papers
    July 2010
    984 pages
    ISBN:9781450302104
    DOI:10.1145/1833349
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 July 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. controller synthesis
    2. human motion
    3. optimization
    4. physics-based animation

    Qualifiers

    • Research-article

    Conference

    SIGGRAPH '10
    Sponsor:

    Acceptance Rates

    SIGGRAPH '10 Paper Acceptance Rate 103 of 390 submissions, 26%;
    Overall Acceptance Rate 1,822 of 8,601 submissions, 21%

    Upcoming Conference

    SIGGRAPH '24

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)1

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Generating Upper‐Body Motion for Real‐Time Characters Making their Way through Dynamic EnvironmentsComputer Graphics Forum10.1111/cgf.1463341:8(169-181)Online publication date: 20-Mar-2023
    • (2022)Real-Time Locomotion on Soft Grounds With Dynamic FootprintsFrontiers in Virtual Reality10.3389/frvir.2022.8018563Online publication date: 28-Mar-2022
    • (2022)Evaluating query languages and systems for high-energy physics dataProceedings of the VLDB Endowment10.14778/3489496.348949815:2(154-168)Online publication date: 4-Feb-2022
    • (2022)Investigation of a Method to Extend a 2-Dimensional Gait to 3-Dimensions in a Human Musculoskeletal Model with 70 Muscles2022 International Symposium on Micro-NanoMehatronics and Human Science (MHS)10.1109/MHS56725.2022.10092017(1-5)Online publication date: 27-Nov-2022
    • (2021)ETOProceedings of the VLDB Endowment10.14778/3489496.348950015:2(183-195)Online publication date: 1-Oct-2021
    • (2021)Finite State Machine-Based Motion-Free Learning of Biped WalkingIEEE Access10.1109/ACCESS.2021.30552419(20662-20672)Online publication date: 2021
    • (2020)Luxo character control using deep reinforcement learningJournal of the Korea Computer Graphics Society10.15701/kcgs.2020.26.4.126:4(1-8)Online publication date: 1-Sep-2020
    • (2019)Continuous Control Monte Carlo Tree Search Informed by Multiple ExpertsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2018.284938625:8(2540-2553)Online publication date: 1-Aug-2019
    • (2018)Physics-based motion capture imitation with deep reinforcement learningProceedings of the 11th ACM SIGGRAPH Conference on Motion, Interaction and Games10.1145/3274247.3274506(1-10)Online publication date: 8-Nov-2018
    • (2018)Simultaneous acquisition of polarimetric SVBRDF and normalsACM Transactions on Graphics10.1145/3272127.327501837:6(1-15)Online publication date: 4-Dec-2018
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media