Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Estimating dual-scale properties of glossy surfaces from step-edge lighting

Published: 12 December 2011 Publication History

Abstract

This paper introduces a rapid appearance capture method suited for a variety of common indoor surfaces, in which a single photograph of the reflection of a step edge is used to estimate both a BRDF and a statistical model for visible surface geometry, or mesostructure. It is applicable to surfaces with statistically stationary variation in surface height, even when these variations are large enough to produce visible texture in the image. Results are shown from a prototype system using a separate camera and LCD, demonstrating good visual matches for a range of man-made indoor materials.

Supplementary Material

Supplemental material. (a172-wang.zip)

References

[1]
Bouguet, J., 2010. Camera calibration toolbox for Matlab. http://www.vision.caltech.edu/bouguetj/calib_doc/.
[2]
Chen, T., Goesele, M., and Seidel, H. P. 2006. Mesostructure from specularity. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1825--1832.
[3]
Cook, R. L., and Torrance, K. E. 1981. A reflectance model for computer graphics. Computer Graphics (Proc. SIGGRAPH) 15, 3, 307--316.
[4]
Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graphics 18, 1, 1--34.
[5]
Dong, Y., Wang, J., Tong, X., Snyder, J., Lan, Y., Ben-Ezra, M., and Guo, B. 2010. Manifold bootstrapping for SVBRDF capture. ACM Trans. Graphics 29, 4.
[6]
Dror, R. O., Adelson, E. H., and Willsky, A. S. 2001. Recognition of surface reflectance properties from a single image under unknown real-world illumination. In Proc. IEEE Workshop on Identifying Objects across Variations in Lighting.
[7]
Francken, Y., Cuypers, T., and Bekaert, P. 2008. Mesostructure from specularity using gradient illumination. In Proc. Int. Workshop on Projector Camera Systems.
[8]
Francken, Y., Cuypers, T., Mertens, T., Gielis, J., and Bekaert, P. 2008. High quality mesostructure acquisition using specularities. In Proc. IEEE Conf. Computer Vision and Pattern Recognition.
[9]
Galerne, B., Gousseau, Y., and Morel, J. 2011. Random phase textures: Theory and synthesis. IEEE Trans. Image Processing 20, 1, 257--267.
[10]
Gardner, A., Tchou, C., Hawkins, T., and Debevec, P. 2003. Linear light source reflectometry. In Proc. SIGGRAPH, 749--758.
[11]
Georghiades, A. S. 2003. Recovering 3-D shape and reflectance from a small number of photographs. In Proc. Eurographics Workshop on Rendering, 230--240.
[12]
Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2009. Estimating specular roughness and anisotropy from second order spherical gradient illumination. Computer Graphics Forum 28, 4, 1161--1170.
[13]
Ghosh, A., Chen, T., Peers, P., Wilson, C. A., and Debevec, P. 2010. Circularly polarized spherical illumination reflectometry. ACM Trans. Graphics 29, 6, 162--173.
[14]
Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26, 3.
[15]
Johnson, M. K., and Adelson, E. H. 2009. Retrographic sensing for the measurement of surface texture and shape. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1070--1077.
[16]
Julesz, B. 1962. Visual pattern discrimination. IRE Trans. Information Theory 8, 2, 84--92.
[17]
Kautz, J., Vázquez, P.-P., Heidrich, W., and Seidel, H.-P. 2000. A unified approach to prefiltered environment maps. In Proc. Eurographics Workshop on Rendering, 185--196.
[18]
Marschner, S. R., Westin, S. H., Lafortune, E. P., Torrance, K. E., and Greenberg, D. P. 1999. Image-based BRDF measurement including human skin. In Proc. Eurographics Workshop on Rendering, 139--152.
[19]
Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of BRDF models. In Proc. Eurographics Symposium on Rendering, 117--126.
[20]
Paterson, J. A., Claus, D., and Fitzgibbon, A. W. 2005. BRDF and geometry capture from extended inhomogeneous samples using flash photography. Computer Graphics Forum 24, 3, 383--391.
[21]
Perlin, K. 1985. An image synthesizer. Computer Graphics (Proc. SIGGRAPH) 19, 3, 287--296.
[22]
Pharr, M., and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation, 2nd ed. Morgan Kaufmann.
[23]
Ramamoorthi, R., and Hanrahan, P. 2001. A signal-processing framework for inverse rendering. In Proc. SIGGRAPH, 117--128.
[24]
Randen, T., and Husoy, J. H. 1999. Filtering for texture classification: A comparative study. IEEE Trans. Pattern Analysis and Machine Intelligence 21, 4, 291--310.
[25]
Romeiro, F., and Zickler, T. 2010. Blind reflectometry. In Proc. European Conf. Computer Vision. Springer, 45--58.
[26]
Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America 57, 9, 1105--1112.
[27]
Tuceryan, M., and Jain, A. K. 1993. Texture analysis. In Handbook of Pattern Recognition and Computer Vision. World Scientific, ch. 2.1.
[28]
Wang, J., and Dana, K. J. 2006. Relief texture from specularities. IEEE Trans. Pattern Analysis and Machine Intelligence 28, 3, 446--457.
[29]
Ward, G. J. 1992. Measuring and modeling anisotropic reflection. Computer Graphics (Proc. SIGGRAPH) 26, 2, 265--272.
[30]
Woodham, R. J. 1980. Photometric method for determining surface orientation from multiple images. Optical Engineering 19, 1, 139--144.
[31]
X-Rite, I., 2011. MA98 portable multi-angle spectrophotometer. www.xrite.com/product_overview.aspx?ID=1148.
[32]
Yu, Y., Debevec, P., Malik, J., and Hawkins, T. 1999. Inverse global illumination: Recovering reflectance models of real scenes from photographs. In Proc. SIGGRAPH, 215--224.
[33]
Zickler, T., Ramamoorthi, R., Enrique, S., and Belhumeur, P. N. 2006. Reflectance sharing: Predicting appearance from a sparse set of images of a known shape. IEEE Trans. Pattern Analysis and Machine Intelligence 28, 8, 1287--1302.

Cited By

View all
  • (2021)Highlight-aware two-stream network for single-image SVBRDF acquisitionACM Transactions on Graphics10.1145/3450626.345985440:4(1-14)Online publication date: 19-Jul-2021
  • (2019)Color Theme--based Aesthetic Enhancement Algorithm to Emulate the Human Perception of Beauty in PhotosACM Transactions on Multimedia Computing, Communications, and Applications10.1145/332899115:2s(1-17)Online publication date: 3-Jul-2019
  • (2019)On‐Site Example‐Based Material Appearance AcquisitionComputer Graphics Forum10.1111/cgf.1376638:4(15-25)Online publication date: 30-Jul-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 30, Issue 6
December 2011
678 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2070781
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2011
Published in TOG Volume 30, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. appearance capture
  2. reflectance
  3. rendering

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)3
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Highlight-aware two-stream network for single-image SVBRDF acquisitionACM Transactions on Graphics10.1145/3450626.345985440:4(1-14)Online publication date: 19-Jul-2021
  • (2019)Color Theme--based Aesthetic Enhancement Algorithm to Emulate the Human Perception of Beauty in PhotosACM Transactions on Multimedia Computing, Communications, and Applications10.1145/332899115:2s(1-17)Online publication date: 3-Jul-2019
  • (2019)On‐Site Example‐Based Material Appearance AcquisitionComputer Graphics Forum10.1111/cgf.1376638:4(15-25)Online publication date: 30-Jul-2019
  • (2019)Flexible SVBRDF Capture with a Multi‐Image Deep NetworkComputer Graphics Forum10.1111/cgf.1376538:4(1-13)Online publication date: 30-Jul-2019
  • (2018)Projection mapping based on BRDF reconstruction from single RGBD imageProceedings of the 16th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry10.1145/3284398.3284410(1-8)Online publication date: 2-Dec-2018
  • (2018)Acquiring spatially varying appearance of printed holographic surfacesACM Transactions on Graphics10.1145/3272127.327507737:6(1-16)Online publication date: 4-Dec-2018
  • (2018)Single-image SVBRDF capture with a rendering-aware deep networkACM Transactions on Graphics10.1145/3197517.320137837:4(1-15)Online publication date: 30-Jul-2018
  • (2018)Single Image Surface Appearance Modeling with Self‐augmented CNNs and Inexact SupervisionComputer Graphics Forum10.1111/cgf.1356037:7(201-211)Online publication date: 24-Oct-2018
  • (2018)Real-time visualization of 3D terrains and subsurface geological structuresAdvances in Engineering Software10.1016/j.advengsoft.2017.10.002115:C(314-326)Online publication date: 1-Jan-2018
  • (2017)Real-time rendering of realistic surface diffraction with low rank factorisationProceedings of the 14th European Conference on Visual Media Production (CVMP 2017)10.1145/3150165.3150167(1-7)Online publication date: 11-Dec-2017
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media