Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Calibrated image appearance reproduction

Published: 01 November 2012 Publication History

Abstract

Managing the appearance of images across different display environments is a difficult problem, exacerbated by the proliferation of high dynamic range imaging technologies. Tone reproduction is often limited to luminance adjustment and is rarely calibrated against psychophysical data, while color appearance modeling addresses color reproduction in a calibrated manner, albeit over a limited luminance range. Only a few image appearance models bridge the gap, borrowing ideas from both areas. Our take on scene reproduction reduces computational complexity with respect to the state-of-the-art, and adds a spatially varying model of lightness perception. The predictive capabilities of the model are validated against all psychophysical data known to us, and visual comparisons show accurate and robust reproduction for challenging high dynamic range scenes.

References

[1]
Adams, A. 1983. The print. The Ansel Adams Photography series. Little, Brown and Company.
[2]
Allred, S. R., Radonjić, A., Gilchrist, A. L., and Brainard, D. H. 2012. Lightness perception in high dynamic range images: Local and remote luminance effects. Journal of Vision 12, 2, 1--16.
[3]
Aydin, T., Mantiuk, R., Myszkowski, K., and Seidel, H. 2008. Dynamic range independent image quality assessment. ACM Transactions on Graphics 27, 69(1)--69(10).
[4]
Chiu, K., Herf, M., Shirley, P., Swamy, S., Wang, C., and Zimmerman, K. 1993. Spatially nonuniform scaling functions for high contrast images. In Proceedings of Graphics Interface '93, 245--253.
[5]
Debevec, P. 2005. A median cut algorithm for light probe sampling. In ACM SIGGRAPH 2005 Posters, ACM, New York, NY, USA, SIGGRAPH '05.
[6]
Drago, F., Myszkowski, K., Annen, T., and Chiba, N. 2003. Adaptive logarithmic mapping for displaying high contrast scenes. Computer Graphics Forum 22, 3, 419--426.
[7]
Durand, F., and Dorsey, J. 2002. Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics 21, 3, 257--266.
[8]
Fairchild, M. D., and Johnson, G. M. 2002. Meet iCAM: an image color appearance model. In IS&T/SID 10th Color Imaging Conference, 33--38.
[9]
Fairchild, M. D. 2005. Color appearance models, 2nd ed. Addison-Wesley, Reading, MA.
[10]
Fairchild, M. 2007. The HDR photographic survey. In Proceedings of the Fifteenth Color Imaging Conference: Color Science and Engineering Systems, Technologies, and Applications, vol. 15, 233--238.
[11]
Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM Transactions on Graphics 21, 3, 249--256.
[12]
Ferwerda, J. A., Pattanaik, S., Shirley, P., and Greenberg, D. P. 1996. A model of visual adaptation for realistic image synthesis. In SIGGRAPH 96 Conference Proceedings, 249--258.
[13]
Fishman, G. A., and Sokol, S. 1990. Electrophysiological Testing in Disorders of the Retina, Optic Nerve, and Visual Pathway. American Academy of Ophthalmology, San Francisco.
[14]
Gilchrist, A., and Radonjić, A. 2010. Frameworks of illumination revealed by probe disk technique. Journal of Vision 10, 5, 1--12.
[15]
Gilchrist, A., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., Spehar, B., Annan, V., and Economou, E. 1999. An anchoring theory of lightness perception. Psychol Rev. 106, 4 (Oct), 795--834.
[16]
Hood, D. C., Ilves, T., Maurer, E., Wandell, B., and Buckingham, E. 1978. Human cone saturation as a function of ambient intensity: A test of models of shifts in the dynamic range. Vision Research 18, 8, 983--993.
[17]
Hunt, R. W. G. 1996. The reproduction of color. Fountain Press, England. Fifth edition.
[18]
Kim, M. H., Weyrich, T., and Kautz, J. 2009. Modeling human color perception under extended luminance levels. ACM Transactions on Graphics 28, 3, 27:1--9.
[19]
Kiser, C., Reinhard, E., Tocci, M., and Tocci, N. 2012. Real-Time automated tone mapping system for HDR video. In IEEE International Conference on Image Processing.
[20]
Krawczyk, G., Mantiuk, R., Myszkowski, K., and Seidel, H. 2004. Lightness perception inspired tone mapping. In First ACM Symposium on Applied Perception in Graphics and Visualization (APGV), 172.
[21]
Kuang, J., Johnson, G. M., and Fairchild, M. D. 2007. icam06: A refined image appearance model for hdr image rendering. Journal of Visual Communication and Image Representation 18, 5, 406--414.
[22]
Kunkel, T., and Reinhard, E. 2009. A neurophysiology-inspired steady-state color appearance model. Journal of the Optical Society of America A 26, 776--782.
[23]
Lasansky, A. 1981. Synaptic action mediating cone responses to annular illumination in the retina of the larval tiger salamander. Journal of Physiology 310, 205--214.
[24]
Li, C., Luo, M. R., Rigg, B., and Hunt, R. W. G. 2002. CMC 2000 chromatic adaptation transform: CMCCAT2000. Color Research and Application 27, 1, 49--58.
[25]
Li, Y., Sharan, L., and Adelson, E. 2005. Compressing and companding high dynamic range images with subband architectures. ACM Transactions on Graphics 24, 3, 836--844.
[26]
Luo, M. R., Clark, A., Rhodes, P., Schappo, A., Scrivner, S., and Tait, C. 1991. Quantifying colour appearance: Part I. LUTCHI colour appearance data. Colour Research and Application 16, 166--180.
[27]
Mantiuk, R., Daly, S., and Kerofsky, L. 2008. Display adaptive tone mapping. ACM Trans. on Graphics 27, 3, 68.
[28]
Mantiuk, R., Mantiuk, R., Tomaszewska, A., and Heidrich, W. 2009. Color correction for tone mapping. Computer Graphics Forum 28, 2, pp. 193--202.
[29]
McCann, J. J., and Rizzi, A. 2012. The Art and Science of HDR Imaging. John Wiley and Sons, Chichester.
[30]
Moon, P., and Spencer, D. E. 1944. Visual data applied to lighting design. Journal of the Optical Society of America 34, 10, 605--617.
[31]
Moroney, N., Fairchild, M. D., Hunt, R. W. G., Li, C. J., Luo, M. R., and Newman, T. 2002. The CIECAM02 color appearance model. In 10th Color Imaging Conference, 23--27.
[32]
Morovič, J. 2008. Color Gamut Mapping. Wiley and Sons, Chichester, UK.
[33]
Myszkowski, K., Mantiuk, R., and Krawczyk, G. 2008. High Dynamic Range Video. Morgan and Claypool Publishers, San Rafael.
[34]
Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In SIGGRAPH 98 Conference Proceedings, 287--298.
[35]
Radonjić, A., Allred, S. R., Gilchrist, A. L., and Brainard, D. H. 2011. The dynamic range of human lightness perception. Current Biology 21, 1391--1936.
[36]
Reinhard, E., and Devlin, K. 2005. Dynamic range reduction inspired by photoreceptor physiology. IEEE Transactions on Visualization and Computer Graphics 11, 1, 13--24.
[37]
Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. 2002. Photographic tone reproduction for digital images. ACM Transactions on Graphics 21, 3, 267--276.
[38]
Reinhard, E., Kunkel, T., Marion, Y., Brouillat, J., Cozot, R., and Bouatouch, K. 2007. Image display algorithms for high and low dynamic range display devices. Journal of the Society for Information Display 15, 12.
[39]
Reinhard, E., Khan, E. A., Akyüz, A. O., and Johnson, G. M. 2008. Color Imaging: Fundamentals and Applications. A K Peters, Wellesley.
[40]
Reinhard, E., Ward, G., Pattanaik, S., Debevec, P., Heidrich, W., and Myszkowski, K. 2010. High dynamic range imaging: Acquisition, display and image-based lighting, 2nd edition ed. Morgan Kaufmann Publishers, San Francisco.
[41]
Schlick, C. 1994. Quantization techniques for the visualization of high dynamic range pictures. In Photorealistic Rendering Techniques, Springer-Verlag Berlin Heidelberg New York, P. Shirley, G. Sakas, and S. Müller, Eds., 7--20.
[42]
Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. on Graphics 23, 3.
[43]
Stidwill, D., and Fletcher, R. 2011. Normal Binocular Vision: Theory, Investigation and Practical Aspects. Wiley-Blackwell, Chichester.
[44]
Tocci, M. D., Kiser, C., Tocci, N., and Sen, P. 2011. A Versatile HDR Video Production System. ACM Transactions on Graphics (TOG) (Proceedings of SIGGRAPH 2011) 30, 4.
[45]
Tumblin, J., and Rushmeier, H. 1993. Tone reproduction for computer generated images. IEEE Computer Graphics and Applications 13, 6, 42--48.
[46]
van Hateren, J. H. 2006. Encoding of high dynamic range video with a model of human cones. ACM Transactions on Graphics 25, 4, 1380--1399.
[47]
Ward, G., Rushmeier, H., and Piatko, C. 1997. A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics 3, 4, 291--306.

Cited By

View all

Index Terms

  1. Calibrated image appearance reproduction

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 31, Issue 6
      November 2012
      794 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/2366145
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 November 2012
      Published in TOG Volume 31, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. color appearance
      2. high dynamic range imaging
      3. lightness perception
      4. tonemapping

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)16
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 26 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Subjective Quality Assessment of Compressed Tone-Mapped High Dynamic Range VideosIEEE Transactions on Image Processing10.1109/TIP.2024.346341833(5440-5455)Online publication date: 1-Jan-2024
      • (2024)Unsupervised HDR Image and Video Tone Mapping via Contrastive LearningIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2023.329035134:2(786-798)Online publication date: 1-Feb-2024
      • (2023)High Dynamic Range ImagingEncyclopedia of Color Science and Technology10.1007/978-3-030-89862-5_177(892-902)Online publication date: 28-Sep-2023
      • (2022)Towards an image-based brightness model for self-luminous stimuliOptics Express10.1364/OE.45126530:6(9035)Online publication date: 3-Mar-2022
      • (2022)High Dynamic Range ImagingEncyclopedia of Color Science and Technology10.1007/978-3-642-27851-8_177-2(1-11)Online publication date: 2-Aug-2022
      • (2021)A ghostfree contrast enhancement method for multiview images without depth informationJournal of Visual Communication and Image Representation10.1016/j.jvcir.2021.10317578:COnline publication date: 1-Jul-2021
      • (2021)High Dynamic Range ImagingComputer Vision10.1007/978-3-030-63416-2_843(558-563)Online publication date: 13-Oct-2021
      • (2020)Infrared Image Adaptive Enhancement Guided by Energy of Gradient Transformation and Multiscale Image FusionApplied Sciences10.3390/app1018626210:18(6262)Online publication date: 9-Sep-2020
      • (2020)Contrast Sensitivity Based Multiscale Base–Detail Separation for Enhanced HDR ImagingApplied Sciences10.3390/app1007251310:7(2513)Online publication date: 6-Apr-2020
      • (2020)HDR image reproduction based on visual achromatic responseOptical Review10.1007/s10043-020-00604-w27:4(361-374)Online publication date: 29-May-2020
      • Show More Cited By

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media