Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2442829.2442851acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Telescopers for rational and algebraic functions via residues

Published: 22 July 2012 Publication History

Abstract

We show that the problem of constructing telescopers for rational functions of m + 1 variables is equivalent to the problem of constructing telescopers for algebraic functions of m variables and we present a new algorithm to construct telescopers for algebraic functions of two variables. These considerations are based on analyzing the residues of the input. According to experiments, the resulting algorithm for rational functions of three variables is faster than known algorithms, at least in some examples of combinatorial interest. The algorithm for algebraic functions implies a new bound on the order of the telescopers.

References

[1]
http://www.risc.jku.at/people/mkauers/residues/
[2]
E. Artin. Algebraic numbers and algebraic functions. Gordon and Breach Science Publishers, New York, 1967.
[3]
M. A. Barkatou. On rational solutions of systems of linear differential equations. J. Symbolic Comput., 28(4-5):547--567, 1999.
[4]
G. A. Bliss. Algebraic functions. Dover Publications Inc., New York, 1966.
[5]
A. Bostan, S. Chen, F. Chyzak, Z. Li. Complexity of creative telescoping for bivariate rational functions. Proc. ISSAC'10, pp. 203--210, 2010.
[6]
A. Bostan, F. Chyzak, M. van Hoeij, L. Pech. Explicit formula for the generating series of diagonal 3D rook paths. Semin. Lothar. Combin., 66:B66a, 2011.
[7]
M. Bronstein. Formulas for series computations. Appl. Algebra Engrg. Comm. Comput., 2(3):195--206, 1992.
[8]
C. Chevalley. Introduction to the Theory of Algebraic Functions of One Variable. Mathematical Surveys, No. VI. AMS, New York, N. Y., 1951.
[9]
F. Chyzak. An extension of Zeilberger's fast algorithm to general holonomic functions. Discrete Math., 217(1-3):115--134, 2000.
[10]
E. Cotton. Sur les intégrales dépendant d'un paramètre. Ann. Sci. de l'É.N.S., 3<sup>e</sup> série, 50:371--592, 1933.
[11]
D. Duval. Absolute factorization of polynomials: a geometric approach. SIAM J. Comput., 20(1):1--21, 1991.
[12]
M. Eichler. Introduction to the theory of algebraic numbers and functions. Translated from the German by George Striker. Pure and Applied Mathematics, Vol. 23. Academic Press, New York, 1966.
[13]
M. van Hoeij. An algorithm for computing an integral basis in an algebraic function field. J. Symbolic Comput., 18(4):353--363, 1994.
[14]
C. Koutschan. HolonomicFunctions user's guide. Techn. Report 10-01 RISC, University Linz. 2010.
[15]
C. Koutschan. A fast approach to creative telescoping. Math Comput. Sci. 4(2-3):259--266, 2010.
[16]
L. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373--378, 1988.
[17]
Ju. I. Manin. Algebraic curves over fields with differentiation. Izv. Akad. Nauk SSSR. Ser. Mat., 22:737--756, 1958. An English translation appears in Transl. Amer. Math. Soc. Ser. 2, 37 (1964) pp. 59--78.
[18]
Ju. I. Manin. Rational points on algebraic curves over function fields. Izv. Akad. Nauk SSSR Ser. Mat., 27:1395--1440, 1963. English translation in Transl. Amer. Math. Soc. Ser. 2, 50 (1966) pp. 189--234.
[19]
R. Pemantle and M. Wilson. Twenty combinatorial examples of asymptotics derived from multivariate generating functions. Siam Review 50(2):199--272, 2008.
[20]
E. Picard. Quelques applications analytiques de la théorie des courbes et des surfaces algébriques. Rédigées par J. Dieudonné. Gauthier-Villars, 1931.
[21]
E. Picard. Sur les périodes des intégrales doubles et sur une classe d'équations Différentielles linéaires. Ann. Sci. de l'É.N.S., 3<sup>e</sup> série, 50:393--595, 1933.
[22]
E. Picard and G. Simart. Théorie des fonctions algébriques de deux variables indépendantes. Tome I, II. (French) Réimpression corrigée (en un volume) de l'édition en deux volumes de 1897 et 1906. Chelsea Publishing Co., 1971.
[23]
H. Poincaré. Sur les résidus des intégrales doubles. Acta Math., 9(1):321--380, 1887.
[24]
M. Rothstein. A new algorithm for integration of exponential and logarithmic functions. In Proceedings of the 1977 MACSYMA Users Conference (Berkeley, CA), pages 263--274. NASA, Washington, DC, 1977.
[25]
N. Takayama. An approach to the zero recognition problem by Buchberger algorithm. J. Symbolic Comput., 14(2-3):265--282, 1992.
[26]
B. M. Trager. Integration of Algebraic Functions. PhD thesis, MIT, 1984.
[27]
B. M. Trager. Personal communication, Nov. 2011.
[28]
B. M. Trager. Algebraic factoring and rational function integration. In SYMSAC'76: Proceedings of the Third ACM Symposium on Symbolic and Algebraic Computation, pages 219--226. ACM, New York, 1976.
[29]
H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities. Invent. Math., 108(3):575--633, 1992.
[30]
D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math., 32(3):321--368, 1990.
[31]
D. Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11(3):195--204, 1991.

Cited By

View all

Index Terms

  1. Telescopers for rational and algebraic functions via residues

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ISSAC '12: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation
    July 2012
    390 pages
    ISBN:9781450312691
    DOI:10.1145/2442829
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    • Grenoble University: Grenoble University
    • INRIA: Institut Natl de Recherche en Info et en Automatique

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 22 July 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. creative telescoping
    2. symbolic integration

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ISSAC'12
    Sponsor:
    • Grenoble University
    • INRIA

    Acceptance Rates

    ISSAC '12 Paper Acceptance Rate 46 of 86 submissions, 53%;
    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)9
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 05 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media