Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2442829.2442864acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Algorithms for the universal decomposition algebra

Published: 22 July 2012 Publication History

Abstract

Let k be a field and let fk [T] be a polynomial of degree n. The universal decomposition algebra A is the quotient of k [X1,...,Xn] by the ideal of symmetric relations (those polynomials that vanish on all permutations of the roots of f). We show how to obtain efficient algorithms to compute in A. We use a univariate representation of A, i.e. an isomorphism of the form A k[T]/Q(T), since in this representation, arithmetic operations in A are known to be quasi-optimal. We give details for two related algorithms, to find the isomorphism above, and to compute the characteristic polynomial of any element of A.

References

[1]
A. V. Aho, K. Steiglitz, and J. D. Ullman. Evaluating polynomials at fixed sets of points. SIAM J. Comput., 4:533--539, 1975.
[2]
J.-M. Arnaudiès and A. Valibouze. Calculs de résolvantes. Rapport LITP 94.46, 1994.
[3]
J.-M. Arnaudiès and A. Valibouze. Lagrange resolvents. J. P. Appl. Alg., 117/118:23--40, 1997.
[4]
P. Aubry and A. Valibouze. Using Galois ideals for computing relative resolvents. J. Symb. Comp., 30(6):635--651, 2000.
[5]
P. Aubry and A. Valibouze. Algebraic computation of resolvents without extraneous powers. European Journal of Combinatorics, 2012. To appear.
[6]
A. Bostan. Algorithmique efficace pour des opérations de base en Calcul formel. PhD thesis, École Polytechnique, 2003.
[7]
A. Bostan, M. F. I. Chowdhury, J. van der Hoeven, and É. Schost. Homotopy methods for multiplication modulo triangular sets. J. Symb. Comp., 2011. To appear.
[8]
A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast computation of special resultants. J. Symb. Comp., 41:1--29, 2006.
[9]
A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets of points. J. Complex., 21:420--446, 2005.
[10]
F. Boulier, F. Lemaire, and M. Moreno Maza. Pardi! In ISSAC'01, pp. 38--47. ACM, 2001.
[11]
N. Bourbaki. Éléments de mathématique, Fasc. XXIII. Hermann, Paris, 1973. Livre II: Algèbre. Chapitre 8.
[12]
D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta Inform., 28:693--701, 1991.
[13]
D. Casperson and J. McKay. Symmetric functions, m-sets, and Galois groups. Math. Comp., 63(208):749--757, 1994.
[14]
N. Chebotarev. Grundzüge des Galois'shen Theorie. P. Noordhoff, 1950.
[15]
A. Colin and M. Giusti. Efficient computation of squarefree Lagrange resolvents. 2010.
[16]
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comp., 9(3):251--280, 1990.
[17]
X. Dahan, M. Moreno Maza, É. Schost, and Y. Xie. On the complexity of the D5 principle. In TC'06, pp. 149--168, 2006.
[18]
L. De Feo and É. Schost. Fast arithmetics in Artin-Schreier towers over finite fields. In ISSAC'09, pp. 127--134. ACM, 2009.
[19]
C. Durvye and G. Lecerf. A concise proof of the Kronecker polynomial system solver from scratch. Expo. Math., 26:101--139, 2008.
[20]
J. C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comp., 16:329--344, 1993.
[21]
J.-C. Faugère and C. Mou. Fast algorithm for change of ordering of zero-dimensional Gröbner bases with sparse multiplication matrices. In ISSAC'11, pp. 115--122. ACM, 2011.
[22]
J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, Cambridge, second edition, 2003.
[23]
M. Giusti, G. Lecerf, and B. Salvy. A Gröbner-free alternative for polynomial system solving. J. Complex., 17:154--211, 2001.
[24]
J. Heintz, T. Krick, S. Puddu, J. Sabia, and A. Waissbein. Deformation techniques for efficient polynomial equation solving. J. Complex., 16(1):70--109, 2000.
[25]
J. König. Aus dem Ungarischen übertragen vom Verfasser. B. G. Teubner, Leipzig, 1903.
[26]
L. Kronecker. Grundzüge einer arithmetischen theorie des algebraischen grössen. J. reine angew. Math., 92:1--122, 1882.
[27]
J.-L. Lagrange. Réflexions sur la résolution algébrique des équations. Mémoires de l'Académie de Berlin, 1770.
[28]
F. Lehobey. Resolvent computations by resultants without extraneous powers. In ISSAC'97, pp. 85--92. ACM, 1997.
[29]
X. Li, M. Moreno Maza, and W. Pan. Computations modulo regular chains. In ISSAC'09, pp. 239--246. ACM, 2009.
[30]
X. Li, M. Moreno Maza, and É. Schost. Fast arithmetic for triangular sets: from theory to practice. J. Symb. Comp., 44(7):891--907, 2009.
[31]
F. S. Macaulay. The algebraic theory of modular systems. Cambridge University Press, 1994.
[32]
A. Poteaux and É. Schost. On the complexity of computing with zero-dimensional triangular sets. Submitted, 2011.
[33]
N. Rennert. A parallel multi-modular algorithm for computing Lagrange resolvents. J. Symb. Comput., 37(5):547--556, 2004.
[34]
N. Rennert and A. Valibouze. Calcul de résolvantes avec les modules de Cauchy. Exp. Math., 8(4):351--366, 1999.
[35]
F. Rouillier. Solving zero-dimensional systems through the rational univariate representation. Appl. Alg. Engrg. Comm. Comput., 9(5):433--461, 1999.
[36]
A. Schönhage. The fundamental theorem of algebra in terms of computational complexity. Technical report, U. Tübingen, 1982.
[37]
A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing, 7:281--292, 1971.
[38]
J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM, 27(4):701--717, 1980.
[39]
V. Shoup. Fast construction of irreducible polynomials over finite fields. J. Symb. Comp., 17(5):371--391, 1994.
[40]
L. Soicher. The computation of the Galois groups. PhD thesis, Concordia University, Montreal, Quebec, Canada, 1981.
[41]
A. Stothers. On the Complexity of Matrix Multiplication. PhD thesis, University of Edinburgh, 2010.
[42]
A. Valibouze. Fonctions symétriques et changements de bases. In EUROCAL'87, vol. 378 of LNCS, pp. 323--332, 1989.
[43]
V. Vassilevska Williams. Breaking the Coppersmith-Winograd barrier. 2011.
[44]
K. Yokoyama. A modular method for computing the Galois groups of polynomials. J. P. Appl. Alg., 117/118:617--636, 1997.
[45]
R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM'79, vol. 72 of LNCS, pp. 216--226. Springer, 1979.

Cited By

View all
  • (2016)A Fast Algorithm for Computing the Truncated ResultantProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930931(341-348)Online publication date: 20-Jul-2016
  • (2013)Fast algorithms for l-adic towers over finite fieldsProceedings of the 38th International Symposium on Symbolic and Algebraic Computation10.1145/2465506.2465956(165-172)Online publication date: 26-Jun-2013

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '12: Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation
July 2012
390 pages
ISBN:9781450312691
DOI:10.1145/2442829
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • Grenoble University: Grenoble University
  • INRIA: Institut Natl de Recherche en Info et en Automatique

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 July 2012

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

ISSAC'12
Sponsor:
  • Grenoble University
  • INRIA

Acceptance Rates

ISSAC '12 Paper Acceptance Rate 46 of 86 submissions, 53%;
Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2016)A Fast Algorithm for Computing the Truncated ResultantProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930931(341-348)Online publication date: 20-Jul-2016
  • (2013)Fast algorithms for l-adic towers over finite fieldsProceedings of the 38th International Symposium on Symbolic and Algebraic Computation10.1145/2465506.2465956(165-172)Online publication date: 26-Jun-2013

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media