Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Adaptive progressive photon mapping

Published: 30 April 2013 Publication History

Abstract

This article introduces a novel locally adaptive progressive photon mapping technique which optimally balances noise and bias in rendered images to minimize the overall error. It is the result of an analysis of the radiance estimation in progressive photon mapping. As a first step, we establish a connection to the field of recursive estimation and regression in statistics and derive the optimal estimation parameters for the asymptotic convergence of existing approaches. Next, we show how to reformulate photon mapping as a spatial regression in the measurement equation of light transport. This reformulation allows us to derive a novel data-driven bandwidth selection technique for estimating a pixel's measurement. The proposed technique possesses attractive convergence properties with finite numbers of samples, which is important for progressive rendering, and it also provides better results for quasi-converged images. Our results show the practical benefits of using our adaptive method.

Supplementary Material

JPG File (tp154.jpg)
a16-kaplanyan-apndx.pdf (kaplanyan.zip)
Supplemental movie, appendix, image and software files for, Adaptive progressive photon mapping
MP4 File (tp154.mp4)

References

[1]
Belcour, L. and Soler, C. 2011. Frequency-Based kernel estimation for progressive photon mapping. In ACM SIGGRAPH Asia Poster Program.
[2]
Cortes, C. and Vapnik, V. 1995. Support-Vector networks. Mach. Learn. 20, 3, 273--297.
[3]
Donoho, D., Johnstone, I., and Johnstone, I. M. 1993. Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425--455.
[4]
Georgiev, I., Krivanek, J., and Slusallek, P. 2011. Boidirectional light transport with vertex merging. In SIGGRAPH Asia Sketches. Vol. 27, 27:1--27:2.
[5]
Hachisuka, T., Jarosz, W., and Jensen, H. W. 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph. 29, 6, 144:1--144:12.
[6]
Hachisuka, T. and Jensen, H. W. 2009. Stochastic progressive photon mapping. ACM Trans. Graph. 28, 5, 141:1--141:8.
[7]
Hachisuka, T. and Jensen, H. W. 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph. 30, 5, 114:1--114:11.
[8]
Hachisuka, T. Ogaki, S., and Jensen, H. W. 2008. Progressive photon mapping. ACM Trans. Graph. 27, 5, 130:1--130:8.
[9]
Hackisuka, T., Pantaleoni, J., and Jensen, H. W. 2012. A path space extension for robust light transport simulation. ACM Trans. Graph. 31.
[10]
Hall, P. and Patil, P. 1994. On the efficiency of on-line density estimators. IEEE Trans. Inf. Theory 40, 5, 1504--1512.
[11]
Havran, V., Bittner, J., Herzog, R., and Seidel, H.-P. 2005. Ray maps for global illumination. In Proceedings of the Eurographics Symposium on Rendering Techniques. 43--54, 311.
[12]
Jakob, W., Regg, C., and Jarosz, W. 2011. Progressive expectation maximization for hierarchical volumetric photon mapping. Comput. Graph. Forum 30, 4.
[13]
Jarosz, W., Nowrouzezahrai, D., Thomas, R., Sloan, P.-P., and Zwicker, M. 2011. Progressive photon beams. ACM Trans. Graph. 30, 6.
[14]
Jensen, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques. 21--30.
[15]
Jones, M. C., Marron, J. S., and Sheather, S. J. 1996. A brief survey of bandwidth selection for density estimation. J. Amer. Statist. Assoc. 91, 433, 401--407.
[16]
Jones, M. C. and Sheather, S. J. 1991. Using non-stochastic terms to advantage in kernel-based estimation of integrated squared density derivatives. Statist. Probab. Lett. 11, 6, 511--514.
[17]
Katkovnik, V. and Shmulevich, I. 2002. Kernel density estimation with adaptive varying window size. Pattern Recogn. Lett. 23, 14, 1641--1648.
[18]
Knaus, C. and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3, 25:1--25:13.
[19]
Lafortune, E. P. and Willems, Y. D. 1993. Bi-Directional path tracing. In Proceedings of the 3rd International Conference on Computational Graphics and Visualization Techniques (COMPUGRAPHICS). 145--153.
[20]
Mitchell, D. and Hanrahan, P. 1992. Illumination from curved reflectors. ACM Trans. Graph. 26, 2, 283--291.
[21]
Myszkowski, K. 1997. Lighting reconstruction using fast and adaptive density estimation techniques. In Proceedings of the Eurographics Workshop on Rendering Techniques. 251--262.
[22]
Ngerng, M. H. 2011. Recursive nonparametric estimation of local first derivative under dependence conditions. Comm. Statist. Theory Methods 40, 7, 1159--1168.
[23]
Park, B. U. and Marron, J. S. 1990. Comparison of data-driven bandwidth selectors. J. Amer. Statist. Assoc. 85, 409, 66--72.
[24]
Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29, 4, 66:1--66:13.
[25]
Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Statist. 33, 3, 1065--1076.
[26]
Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 3, 681--682.
[27]
Pharr, M. and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation 2nd Ed. Morgan Kaufmann, San Fransisco, CA.
[28]
Reif, J. H., Tygar, J. D., and Yoshida, A. 1994. Computability and complexity of ray tracing. Discr. Comput. Geom. 11, 1, 265--288.
[29]
Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1--159:12.
[30]
Rudemo, M. 1982. Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9, 2, 65--78.
[31]
Schjoth, L. 2009. Anisotropic density estimation in global illumination. Ph.D. thesis, University of Copenhagen.
[32]
Schregle, R. 2003. Bias compensation for photon maps. Comput. Graph. Forum 22, 4, 729--742.
[33]
Katkovnik, V. and Shmulevich, I. 2002. Kernel density estimation with adaptive varying window size. Patt. Recog. Lett. 23, 14, 1641--1648.
[34]
Knaus, C. and Zwicker, M. 2011. Progressive photon mapping: A probabilistic approach. ACM Trans. Graph. 30, 3, 25:1--25:13.
[35]
Lafortune, E. P. and Willems, Y. D. 1993. Bi-Directional path tracing. In Proceedings of the 3rd International Conference on Computational Graphics and Visualization Techniques (COMPUGRAPHICS'93). 145--153.
[36]
Mitchell, D. and Hanrahan, P. 1992. Illumination from curved reflectors. SIGGRAPH Comput. Graph. 26, 2, 283--291.
[37]
Myszkowski, K. 1997. Lighting reconstruction using flat and adaptive density estimation techniques. In Proceedings of the Eurographics Workshop on Rendering Techniques. 251--262.
[38]
Ngerng, M. H. 2011. Recursive nonparametric estimation of local first derivative under dependence conditions. Comm. Statist. Theory Methods 40, 7, 1159--1168.
[39]
Park, B. U. and Marron, J. S. 1990. Comparison of data-driven bandwidth selectors. J. Amer. Statist. Assoc. 85, 409, 66--72.
[40]
Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hoberock, J., Luebke, D., McAllister, D., McGuire, M., Morley, K., Robison, A., and Stich, M. 2010. Optix: A general purpose ray tracing engine. ACM Trans. Graph. 29, 4, 66:1--66:13.
[41]
Parzen, E. 1962. On estimation of a probability density function and mode. Ann. Math. Statist. 33, 3, 1065--1076.
[42]
Perlin, K. 2002. Improving noise. ACM Trans. Graph. 21, 3, 681--682.
[43]
Pharr, M. and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation 2nd Ed. Morgan Kaufmann, San Fransisco, CA.
[44]
Reif, J. H., Tygar, J. D., and Yoshida, A. 1994. Computability and complexity of ray tracing. Discr. Comput. Geom. 11, 1, 265--288.
[45]
Rousselle, F., Knaus, C., and Zwicker, M. 2011. Adaptive sampling and reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6, 159:1--159:12.
[46]
Rudemo, M. 1982. Empirical choice of histograms and kernel density estimators. Scand. J. Statist. 9, 2, 65--78.
[47]
Schjoth, L. 2009. Anisotropic density estimation in global illumination. Ph.D. thesis, University of Copenhagen.
[48]
Schregle, R. 2003. Bias compensation for photon maps. Comput. Graph. Forum 22, 4, 729--742.
[49]
Sheather, S. J. and Jones, M. C. 1991. A reliable data-based bandwidth selection method for kernel density estimation. J. Roy. Statist. Soc. B53, 3, 683--690.
[50]
Shirley, P., Wade, B., Hubbard, P. M., Zareski, D., Walter, B., and Greenberg, D. P. 1995. Global illumination via density-estimation. In Proceedings of the 6th Workshop on Rendering. 219--230.
[51]
Silverman, B. 1986. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman and Hall.
[52]
Spencer, B. and Jones, M. W. 2009. Into the blue: Better caustics through photon relaxation. Comput. Graph. Forum 28, 2, 319--328.
[53]
Suykens, F. and Willems, Y. D. 2000. Density control for photon maps. In Proceedings of the Eurographics Workshop on Rendering Techniques. 23--34.
[54]
van Eeden, C. 1985. Mean integrated squared error of kernel estimators when the density and its derivative are not necessarily continuous. Ann. Inst. Statist. Math. 37, 1, 461--472.
[55]
Veach, E. 1998. Robust monte carlo methods for light transport simulation. Ph.D. thesis, Stanford University. AA19837162.
[56]
Veach, E. and Guibas, L. 1994. Bidirectional estimators for light transport. In Proceedings of the Eurographics Rendering Workshop. 147--162.
[57]
Vorba, J. 2011. Bidirectional photon mapping. In Proceedings of the 15th Central European Seminar on Computer Graphics. 25--32.
[58]
Walter, B. J. 1998. Density estimation techniques for global illumination. Ph.D. thesis, AA19900037, Cornell University, Ithaca, NY.
[59]
Wand, M. P. and Jones, M. C. 1994. Multivariate plug-in bandwidth selection. Comput. Statist. 9, 97--116.
[60]
Wolverton, C. and Wagner, T. 1969. Recursive estimates of probability densities. IEEE Trans. Syst. Sci. Cybernet. 5, 3, 246--247.
[61]
Wong, K. W. and Wang, W. 2005. Adaptive density estimation using an orthogonal series for global illumination. Comput. Graph. 29, 5, 738--755.
[62]
Yamato, H. 1971. Sequential estimation of a continuous probability density function and mode. Bull. Math. Statist. 14, 1--12.

Cited By

View all
  • (2024)Optimizing Path Termination for Radiance Caching Through Explicit Variance TradingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753817:3(1-19)Online publication date: 9-Aug-2024
  • (2024)Photon-Driven Manifold SamplingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753757:3(1-16)Online publication date: 9-Aug-2024
  • (2024)Photon Field Networks for Dynamic Real-Time Volumetric Global IlluminationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332710730:1(975-985)Online publication date: 1-Jan-2024
  • Show More Cited By

Index Terms

  1. Adaptive progressive photon mapping

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 32, Issue 2
    April 2013
    134 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2451236
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 April 2013
    Accepted: 01 November 2012
    Revised: 01 November 2012
    Received: 01 April 2012
    Published in TOG Volume 32, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Global illumination
    2. photon mapping

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)36
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 23 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Optimizing Path Termination for Radiance Caching Through Explicit Variance TradingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753817:3(1-19)Online publication date: 9-Aug-2024
    • (2024)Photon-Driven Manifold SamplingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753757:3(1-16)Online publication date: 9-Aug-2024
    • (2024)Photon Field Networks for Dynamic Real-Time Volumetric Global IlluminationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332710730:1(975-985)Online publication date: 1-Jan-2024
    • (2024)Hypothesis Testing for Progressive Kernel Estimation and VCM FrameworkIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.327459530:8(4709-4723)Online publication date: 1-Aug-2024
    • (2023)Template-based scattering illumination for volumetric datasetMultimedia Tools and Applications10.1007/s11042-023-17859-583:20(58555-58571)Online publication date: 22-Dec-2023
    • (2022)Unbiased Caustics Rendering Guided by Representative Specular PathsSIGGRAPH Asia 2022 Conference Papers10.1145/3550469.3555381(1-8)Online publication date: 29-Nov-2022
    • (2022)A Theoretical Analysis of Compactness of the Light Transport OperatorACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530725(1-9)Online publication date: 27-Jul-2022
    • (2021)A Shader-Based Ray Tracing EngineApplied Sciences10.3390/app1107326411:7(3264)Online publication date: 6-Apr-2021
    • (2021)Path graphsACM Transactions on Graphics10.1145/3478513.348054740:6(1-15)Online publication date: 10-Dec-2021
    • (2021)Ensemble denoising for Monte Carlo renderingsACM Transactions on Graphics10.1145/3478513.348051040:6(1-17)Online publication date: 10-Dec-2021
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media