Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2488608.2488668acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Majority is stablest: discrete and SoS

Published: 01 June 2013 Publication History

Abstract

The Majority is Stablest Theorem has numerous applications in hardness of approximation and social choice theory. We give a new proof of the Majority is Stablest Theorem by induction on the dimension of the discrete cube. Unlike the previous proof, it uses neither the "invariance principle" nor Borell's result in Gaussian space. The new proof is general enough to include all previous variants of majority is stablest such as "it ain't over until it's over" and "Majority is most predictable". Moreover, the new proof allows us to derive a proof of Majority is Stablest in a constant level of the Sum of Squares hierarchy. This implies in particular that Khot-Vishnoi instance of Max-Cut does not provide a gap instance for the Lasserre hierarchy.

References

[1]
P. Austrin. Balanced MAX-2-SAT might not be the hardest. In STOC, pages 189--197. ACM, 2007.
[2]
B. Barak, F. G. S. L. Brand~ao, A. Harrow, J. Kelner, D. Steurer, and Y. Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In STOC, pages 307--326, 2012.
[3]
B. Barak, P. Raghavendra, and D. Steurer. Rounding Semidefinite Programming Hierarchies via Global Correlation. In FOCS, pages 472--481, 2011.
[4]
W. Beckner. Inequalities in Fourier analysis. Annals of Mathematics, 102:159--182, 1975.
[5]
S. G. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab., 25(1):206--214, 1997.
[6]
A. Bonami. Etude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier (Grenoble), 20(fasc. 2):335--402 (1971), 1970.
[7]
C. Borell. Geometric bounds on the Ornstein-Uhlenbeck velocity process. Z. Wahrsch. Verw. Gebiete, 70(1):1--13, 1985.
[8]
J. Bourgain. On the distribution of the Fourier spectrum of boolean functions. Israel Journal of Mathematics, 131:269--276, 2002.
[9]
E. Chlamtac and G. Singh. Improved Approximation Guarantees through Higher Levels of SDP Hierarchies. In APPROX-RANDOM, pages 49--62, 2008.
[10]
N. Devanur, S. Khot, R. Saket, and N. Vishnoi. Integrality gaps for sparsest cut and minimum linear arrangement problems. In STOC, pages 537--546, 2006.
[11]
I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (STOC 2006), pages 344--353, 2006.
[12]
I. Dinur and S. Safra. On the hardness of approximating minimum vertex-cover. Annals of Mathematics, 162(1):439--485, 2005.
[13]
D. Felsenthal and M. Machover. The Measurement of Voting Power. Edward Elgar Publishing, 1998.
[14]
E. Friedgut and G. Kalai. Every monotone graph property has a sharp threshold. Proc. Amer. Math. Soc., 124:2993--3002, 1996.
[15]
E. Friedgut, G. Kalai, and N. Nisan. Elections Can be Manipulated Often. In FOCS, pages 243--249, 2008.
[16]
M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. JACM, pages 1115--1145, 1995.
[17]
D. Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity. Theoretical Computer Science, 259(1-2):613--622, 2001.
[18]
D. Grigoriev and N. Vorobjov. Complexity of Null-and Positivstellensatz proofs. Ann. Pure Appl. Logic, 113(1-3):153--160, 2001.
[19]
J. Hastad. Some optimal inapproximability results. In STOC, pages 1--10, May 1997.
[20]
D. Hilbert. Uber die Darstellung definiter Formenals Summe von Formenquadraten. Mathematische Annalen, 12:307--326, 1888.
[21]
M. Isaksson and E. Mossel. New maximally stable gaussian partitions with discrete applications. Israel Journal of Mathematics, 189:347--396, 2012.
[22]
J. Kahn, G. Kalai, and N. Linial. The in uence of variables on boolean functions. In FOCS, pages 68--80, 1988.
[23]
G. Kalai. A Fourier-theoretic perspective on the Condorcet paradox and Arrow's theorem. Advances in Applied Mathematics, 29(3):412--426, 2002.
[24]
G. Kalai. Social Indeterminacy. Econometrica, 72:1565--1581, 2004.
[25]
S. Khot. On the power of unique 2-prover 1-round games. In STOC, pages 767--775, 2002.
[26]
S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for Max-Cut and other 2-variable CSPs? SICOMP, 37(1):319--357, 2007.
[27]
S. Khot, P. Popat, and R. Saket. Approximate Lasserre Integrality Gap for Unique Games. In APPROX-RANDOM, pages 298--311, 2010.
[28]
S. Khot and R. Saket. SDP Integrality Gaps with Local 1-Embeddability. In FOCS, pages 565--574, 2009.
[29]
S. Khot and N. K. Vishnoi. The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l 1. In FOCS, pages 53--62, 2005.
[30]
G. Kindler and R. O'Donnell. Gaussian noise sensitivity and fourier tails. In CCC, pages 137--147, 2012.
[31]
J. Krivine. Anneaux préordonnés. J. Analyse Math., 12:307--326, 1964.
[32]
J. Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796--817, 2001.
[33]
J. Lasserre. Moments, Positive polynomials and their Applications. Imperial College Press, London, 2010.
[34]
H. Lombardi, N. Mnev, and M.-F. Roy. The Positivstellensatz and Small Deduction Rules for Systems of Inequalities. Mathematische Nachrichten, 181(1):245--259--, 1996.
[35]
G. Lorentz. Bernstein polynomials. Chelsea Publishing Company, Incorporated, 1986.
[36]
E. Mossel. Lecture notes on Fourier Analysis. http://www.stat.berkeley.edu/mossel/teach/206af05/, 2005.
[37]
E. Mossel. Gaussian bounds for noise correlation of functions. GAFA, 19(6):1713--1756, 2010.
[38]
E. Mossel. A quantitative Arrow theorem . Probab. Theory Related Fields, 154(1--2):49--88, 2012.
[39]
E. Mossel and J. Neeman. Robust optimality of gaussian noise stability. Arxiv : 1210.4126, 2012.
[40]
E. Mossel, R. O'Donnell, and K. Oleszkiewicz. Noise stability of functions with low influences: invariance and optimality. Ann. Math., 171:295--341, 2010.
[41]
R. O'Donnell. Lecture 16: The hypercontractivity theorem. http://www.cs.cmu.edu/ odonnell/boolean-analysis/lecture16.pdf, 2007.
[42]
R. O'Donnell and Y. Wu. An optimal SDP algorithm for Max-Cut, and equally optimal long code tests. In STOC, pages 335--344, 2008.
[43]
R. O'Donnell and Y. Zhou. Approximability and Proof Complexity. In SODA, 2013.
[44]
P. Parrilo. Structured semidefinite programs and Semialgebraic Methods in Robustness and Optimization. PhD thesis, Caltech, 2000.
[45]
M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics Journal, 42(3):969--984, 1993.
[46]
P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In STOC, pages 245--254, 2008.
[47]
P. Raghavendra and D. Steurer. Integrality Gaps for Strong SDP Relaxations of UNIQUE GAMES. In FOCS, pages 575--585, 2009.
[48]
A. Samorodnitsky and L. Trevisan. Gowers uniformity, in uence of variables, and PCPs. In STOC, pages 11--20, New York, NY, USA, 2006. ACM Press.
[49]
G. Schoenebeck. Linear Level Lasserre Lower Bounds for Certain k-CSPs. In FOCS, pages 593--602, 2008.
[50]
W. Sheppard. On the application of the theory of error to cases of normal distribution and normal correlation. Phil. Trans. Royal Soc. London, 192:101--168, 1899.
[51]
G. Stengle. A Nullstellensatz and a Positivstellensatz in Semialgebraic Geometry. Mathematische Annalen, 207(2):87--97, 1974.
[52]
M. Talagrand. On Russo's approximate 0-1 law. Ann. Probab., 22(3):1576--1587, 1994.

Cited By

View all
  • (2021)Probabilistic view of voting, paradoxes, and manipulationBulletin of the American Mathematical Society10.1090/bull/175159:3(297-330)Online publication date: 2-Dec-2021
  • (2018)Invariance Principle on the SliceACM Transactions on Computation Theory10.1145/318659010:3(1-37)Online publication date: 13-Apr-2018
  • (2018)On the Integrality Gap of Degree-4 Sum of Squares for Planted CliqueACM Transactions on Algorithms10.1145/317853814:3(1-31)Online publication date: 16-Jun-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC '13: Proceedings of the forty-fifth annual ACM symposium on Theory of Computing
June 2013
998 pages
ISBN:9781450320290
DOI:10.1145/2488608
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 June 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. majority is stablest
  2. sum of squares hierarchy
  3. unique games conjecture

Qualifiers

  • Research-article

Conference

STOC'13
Sponsor:
STOC'13: Symposium on Theory of Computing
June 1 - 4, 2013
California, Palo Alto, USA

Acceptance Rates

STOC '13 Paper Acceptance Rate 100 of 360 submissions, 28%;
Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Upcoming Conference

STOC '25
57th Annual ACM Symposium on Theory of Computing (STOC 2025)
June 23 - 27, 2025
Prague , Czech Republic

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Probabilistic view of voting, paradoxes, and manipulationBulletin of the American Mathematical Society10.1090/bull/175159:3(297-330)Online publication date: 2-Dec-2021
  • (2018)Invariance Principle on the SliceACM Transactions on Computation Theory10.1145/318659010:3(1-37)Online publication date: 13-Apr-2018
  • (2018)On the Integrality Gap of Degree-4 Sum of Squares for Planted CliqueACM Transactions on Algorithms10.1145/317853814:3(1-31)Online publication date: 16-Jun-2018
  • (2017)Complexity and Approximability of Parameterized MAX-CSPsAlgorithmica10.1007/s00453-017-0310-879:1(230-250)Online publication date: 1-Sep-2017
  • (2016)On the integrality gap of degree-4 sum of squares for planted cliqueProceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms10.5555/2884435.2884511(1079-1095)Online publication date: 10-Jan-2016
  • (2014)Hypercontractive inequalities via SOS, and the Frankl-Rödl graphProceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms10.5555/2634074.2634193(1644-1658)Online publication date: 5-Jan-2014
  • (2014)Many Can Work Better than the Best: Diagnosing with Medical Images via CrowdsourcingEntropy10.3390/e1607386616:7(3866-3877)Online publication date: 14-Jul-2014

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media