Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Automatic noise modeling for ghost-free HDR reconstruction

Published: 01 November 2013 Publication History

Abstract

High dynamic range reconstruction of dynamic scenes requires careful handling of dynamic objects to prevent ghosting. However, in a recent review, Srikantha et al. [2012] conclude that "there is no single best method and the selection of an approach depends on the user's goal". We attempt to solve this problem with a novel approach that models the noise distribution of color values. We estimate the likelihood that a pair of colors in different images are observations of the same irradiance, and we use a Markov random field prior to reconstruct irradiance from pixels that are likely to correspond to the same static scene object. Dynamic content is handled by selecting a single low dynamic range source image and hand-held capture is supported through homography-based image alignment. Our noise-based reconstruction method achieves better ghost detection and removal than state-of-the-art methods for cluttered scenes with large object displacements. As such, our method is broadly applicable and helps move the field towards a single method for dynamic scene HDR reconstruction.

Supplementary Material

ZIP File (a201-granados.zip)
Supplemental material.

References

[1]
Bay, H., Ess, A., Tuytelaars, T., and Gool, L. J. V. 2008. Speeded-up robust features (SURF). Computer Vision and Image Understanding 110, 3, 346--359.
[2]
Bogoni, L. 2000. Extending dynamic range of monochrome and color images through fusion. In Proc. ICPR, 3007--3016.
[3]
Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE TPAMI 26, 9, 1124--1137.
[4]
Boykov, Y., Veksler, O., and Zabih, R. 2001. Fast approximate energy minimization via graph cuts. IEEE TPAMI 23, 11.
[5]
Burt, P. J., and Kolczynski, R. J. 1993. Enhanced image capture through fusion. In Proc. ICCV, 173--182.
[6]
Drago, F., Myszkowski, K., Annen, T., and Chiba, N. 2003. Adaptive logarithmic mapping for displaying high contrast scenes. CGF 22, 3, 419--426.
[7]
Fattal, R., Lischinski, D., and Werman, M. 2002. Gradient domain high dynamic range compression. ACM TOG 21, 3.
[8]
Fischler, M. A., and Bolles, R. C. 1981. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 6, 381--395.
[9]
Gallo, O., Gelfand, N., Chen, W.-C., Tico, M., and Pulli, K. 2009. Artifact-free high dynamic range imaging. In Proc. ICCP, 1--7.
[10]
Gallo, O., Tico, M., Manduchi, R., Gelfand, N., and Pulli, K. 2012. Metering for exposure stacks. CGF 31, 2.
[11]
Granados, M., Seidel, H.-P., and Lensch, H. P. A. 2008. Background estimation from non-time sequence images. In Proc. GI, 33--40.
[12]
Granados, M., Ajdin, B., Wand, M., Theobalt, C., Seidel, H.-P., and Lensch, H. P. A. 2010. Optimal HDR reconstruction with linear digital cameras. In Proc. CVPR, 215--222.
[13]
Grosch, T. 2006. Fast and robust high dynamic range image generation with camera and object movement. In Proc. VMV.
[14]
Heo, Y. S., Lee, K. M., Lee, S. U., Moon, Y., and Cha, J. 2010. Ghost-free high dynamic range imaging. In Proc. ACCV, vol. 4, 486--500.
[15]
Hu, J., Gallo, O., and Pulli, K. 2012. Exposure stacks of live scenes with hand-held cameras. In Proc. ECCV, 499--512.
[16]
Hubbard, W. M. 1970. The approximation of a Poisson distribution by a Gaussian distribution. Proc. IEEE 58, 9, 1374--1375.
[17]
Jacobs, K., Loscos, C., and Ward, G. 2008. Automatic high-dynamic range image generation for dynamic scenes. IEEE CGA 28, 2, 84--93.
[18]
Janesick, J. 2001. Scientific charge-coupled devices. SPIE Press.
[19]
Kang, S. B., Uyttendaele, M., Winder, S. A. J., and Szeliski, R. 2003. High dynamic range video. ACM TOG 22, 3, 319--325.
[20]
Khan, E. A., Akyüz, A. O., and Reinhard, E. 2006. Ghost removal in high dynamic range images. In Proc. ICIP.
[21]
Liu, C., Szeliski, R., Kang, S. B., Zitnick, C. L., and Freeman, W. T. 2008. Automatic estimation and removal of noise from a single image. IEEE TPAMI 30, 2, 299--314.
[22]
Mann, S., and Picard, R. 1995. Being 'undigital' with digital cameras: Extending dynamic range by combining differently exposed pictures. In Proc. IS&T, 422--428.
[23]
Menzel, N., and Guthe, M. 2007. Freehand HDR photography with motion compensation. In Proc. VMV, 127--134.
[24]
Min, T.-H., Park, R.-H., and Chang, S. 2009. Histogram based ghost removal in high dynamic range images. In Proc. ICME, 530--533.
[25]
Pece, F., and Kautz, J. 2010. Bitmap movement detection: HDR for dynamic scenes. In Proc. CVMP, 1--8.
[26]
Pedone, M., and Heikkilä, J. 2008. Constrain propagation for ghost removal in high dynamic range images. In Proc. VISAPP.
[27]
Raman, S., and Chaudhuri, S. 2010. Bottom-up segmentation for ghost-free reconstruction of a dynamic scene from multiexposure images. In Proc. ICVGIP, 56--63.
[28]
Reinhard, E., Ward, G., Pattanaik, S., and Debevec, P. 2005. High dynamic range imaging: Acquisition, display and image-based lighting. Morgan Kaufmann publishers.
[29]
Robertson, M., Borman, S., and Stevenson, R. 2003. Estimation-theoretic approach to dynamic range improvement using multiple exposures. J. Elec. Imag. 12, 2, 219--228.
[30]
Sen, P., Kalantari, N. K., Yaesoubi, M., Darabi, S., Goldman, D., and Shechtman, E. 2012. Robust patch-based hdr reconstruction of dynamic scenes. ACM TOG 31, 6.
[31]
Sidibé, D., Puech, W., and Strauss, O. 2009. Ghost detection and removal in high dynamic range images. In Proc. EUSIPCO.
[32]
Silk, S., and Lang, J. 2012. Fast high dynamic range image deghosting for arbitrary scene motion. In Proc. GI, 85--92.
[33]
Simakov, D., Caspi, Y., Shechtman, E., and Irani, M. 2008. Summarizing visual data using bidirectional similarity. In Proc. CVPR.
[34]
Srikantha, A., and Sidibé, D. 2012. Ghost detection and removal for high dynamic range images: Recent advances. Sig. Proc.: Image Comm. 27, 6, 650--662.
[35]
Tocci, M. D., Kiser, C., Tocci, N., and Sen, P. 2011. A versatile hdr video production system. ACM TOG 30, 4, 41.
[36]
Tomasi, C., and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proc. ICCV, 839--846.
[37]
Tomaszewska, A. M., and Markowski, M. 2010. Dynamic scenes HDRI acquisition. In Proc. ICIAR, vol. 2, 345--354.
[38]
Veksler, O., Boykov, Y., and Mehrani, P. 2010. Superpixels and supervoxels in an energy optimization framework. In Proc. ECCV, vol. 6315, 211--224.
[39]
Zhang, W., and Cham, W.-K. 2012. Gradient-directed multiexposure composition. IEEE TIP 21, 4, 2318--2323.
[40]
Zimmer, H., Bruhn, A., and Weickert, J. 2011. Freehand HDR imaging of moving scenes with simultaneous resolution enhancement. CGF 30, 2, 405--414.

Cited By

View all
  • (2024)Ghost-free multi-exposure high dynamic range imaging based on feedback networkThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03072-w40:6(4115-4132)Online publication date: 1-Jun-2024
  • (2023)Multi-exposure image fusion of dynamic scenes using consistency detection and weighted least squares filteringOptical Engineering10.1117/1.OE.62.1.01310362:01Online publication date: 1-Jan-2023
  • (2023)Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.00741(8037-8047)Online publication date: 1-Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 32, Issue 6
November 2013
671 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2508363
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 November 2013
Published in TOG Volume 32, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. HDR deghosting
  2. camera noise
  3. motion detection

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)24
  • Downloads (Last 6 weeks)1
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Ghost-free multi-exposure high dynamic range imaging based on feedback networkThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03072-w40:6(4115-4132)Online publication date: 1-Jun-2024
  • (2023)Multi-exposure image fusion of dynamic scenes using consistency detection and weighted least squares filteringOptical Engineering10.1117/1.OE.62.1.01310362:01Online publication date: 1-Jan-2023
  • (2023)Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction2023 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV51070.2023.00741(8037-8047)Online publication date: 1-Oct-2023
  • (2023)Learning image blind denoisers without explicit noise modelingMultimedia Tools and Applications10.1007/s11042-023-14590-z82:18(27839-27859)Online publication date: 23-Feb-2023
  • (2022)Multi-Scale Attention-Guided Non-Local Network for HDR Image ReconstructionSensors10.3390/s2218704422:18(7044)Online publication date: 17-Sep-2022
  • (2022)Multi-Exposure Image Fusion Techniques: A Comprehensive ReviewRemote Sensing10.3390/rs1403077114:3(771)Online publication date: 7-Feb-2022
  • (2022)DomainPlus: Cross Transform Domain Learning towards High Dynamic Range ImagingProceedings of the 30th ACM International Conference on Multimedia10.1145/3503161.3547823(1954-1963)Online publication date: 10-Oct-2022
  • (2022)FlexHDR: Modeling Alignment and Exposure Uncertainties for Flexible HDR ImagingIEEE Transactions on Image Processing10.1109/TIP.2022.320356231(5923-5935)Online publication date: 2022
  • (2022)Attention-Guided Progressive Neural Texture Fusion for High Dynamic Range Image RestorationIEEE Transactions on Image Processing10.1109/TIP.2022.316007031(2661-2672)Online publication date: 1-Jan-2022
  • (2022)High Dynamic Range Imaging for Dynamic Scenes With Large-Scale Motions and Severe SaturationIEEE Transactions on Instrumentation and Measurement10.1109/TIM.2022.314420571(1-15)Online publication date: 2022
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media