Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2576768.2598291acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Multiple regression genetic programming

Published: 12 July 2014 Publication History

Abstract

We propose a new means of executing a genetic program which improves its output quality. Our approach, called Multiple Regression Genetic Programming (MRGP) decouples and linearly combines a program's subexpressions via multiple regression on the target variable. The regression yields an alternate output: the prediction of the resulting multiple regression model. It is this output, over many fitness cases, that we assess for fitness, rather than the program's execution output. MRGP can be used to improve the fitness of a final evolved solution. On our experimental suite, MRGP consistently generated solutions fitter than the result of competent GP or multiple regression. When integrated into GP, inline MRGP, on the basis of equivalent computational budget, outperforms competent GP while also besting post-run MRGP. Thus MRGP's output method is shown to be superior to the output of program execution and it represents a practical, cost neutral, improvement to GP.

References

[1]
P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems, 47(4):547 -- 553, 2009. Smart Business Networks: Concepts and Empirical Evidence.
[2]
R. R. Curtin, J. R. Cline, N. P. Slagle, W. B. March, P. Ram, N. A. Mehta, and A. G. Gray. MLPACK: A scalable C+ machine learning library. Journal of Machine Learning Research, 14:801--805, 2013.
[3]
K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE Transactions on, 6(2):182--197, apr 2002.
[4]
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of statistics, 32(2):407--499, 2004.
[5]
P. Elias. Universal codeword sets and representations of the integers. Information Theory, IEEE Transactions on, 21(2):194--203, 1975.
[6]
T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning: data mining, inference and prediction. Springer, 2 edition, 2009.
[7]
H. Iba, T. Sato, and H. de Garis. Numerical genetic programming for system identification. In J. P. Rosca, editor, Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, pages 64--75, Tahoe City, California, USA, 9 July 1995.
[8]
M. Jiang and A. H. Wright. An adaptive function identification system. In Proceedings of the IEEE/ACM Conference on Developing and Managing Intelligent System Projects, Vienna, Virginia, USA, pages 47--53, Mar. 1993.
[9]
M. Keijzer. Improving symbolic regression with interval arithmetic and linear scaling. In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, editors, Genetic Programming, Proceedings of EuroGP'2003, volume 2610 of LNCS, pages 70--82, Essex, 14--16 Apr. 2003. Springer-Verlag.
[10]
M. Keijzer. Scaled symbolic regression. Genetic Programming and Evolvable Machines, 5(3):259--269, Sept. 2004.
[11]
S.-Y. Liong, T. R. Gautam, S. T. Khu, V. Babovic, M. Keijzer, and N. Muttil. Genetic programming: A new paradigm in rainfall runoff modeling. Journal of American Water Resources Association, 38(3):705--718, June 2002.
[12]
B. McKay, M. Willis, D. Searson, and G. Montague. Non-linear continuum regression using genetic programming. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages 1106--1111, Orlando, Florida, USA, 13--17 July 1999. Morgan Kaufmann.
[13]
J. Rissanen. A Universal Prior For Integers And Estimation By Minimum Description Length. Annals Of Statistics, 11(2):416--431, 1983.
[14]
A. Sobester, P. B. Nair, and A. J. Keane. Evolving intervening variables for response surface approximations. In 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, number AIAA 2004--4379 in, pages 1--12, Albany, New York, USA, 30-Aug. 1-Sept. 2004.
[15]
K. Stanislawska, K. Krawiec, and Z. W. Kundzewicz. Modeling global temperature changes with genetic programming. Computer & Mathematics with Applications, 64(12):3717--3728, 2012.
[16]
R. A. Stine. Model Selection Using Information Theory and the MDL Principle. Sociological Methods Research, 33(2):230--260, Nov. 2004.
[17]
A. Tsanas and A. Xifara. Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy and Buildings, 49(0):560 -- 567, 2012.
[18]
E. Vladislavleva. Model-based Problem Solving through Symbolic Regression via Pareto Genetic Programming. PhD thesis, Tilburg University, Tilburg, the Netherlands, 2008.
[19]
T. Worm and K. Chiu. Prioritized grammar enumeration: symbolic regression by dynamic programming. In C. Blum, E. Alba, A. Auger, J. Bacardit, J. Bongard, J. Branke, N. Bredeche, D. Brockhoff, F. Chicano, A. Dorin, R. Doursat, A. Ekart, T. Friedrich, M. Giacobini, M. Harman, H. Iba, C. Igel, T. Jansen, T. Kovacs, T. Kowaliw, M. Lopez-Ibanez, J. A. Lozano, G. Luque, J. McCall, A. Moraglio, A. Motsinger-Reif, F. Neumann, G. Ochoa, G. Olague, Y.-S. Ong, M. E. Palmer, G. L. Pappa, K. E. Parsopoulos, T. Schmickl, S. L. Smith, C. Solnon, T. Stuetzle, E.-G. Talbi, D. Tauritz, and L. Vanneschi, editors, GECCO '13: Proceeding of the fifteenth annual conference on Genetic and evolutionary computation conference, pages 1021--1028, Amsterdam, The Netherlands, 6--10 July 2013. ACM.
[20]
F. Xue, R. Subbu, and P. Bonissone. Locally weighted fusion of multiple predictive models. In Neural Networks, 2006. IJCNN '06. International Joint Conference on, pages 2137--2143, 2006.

Cited By

View all
  • (2025) Harmonia : A Unified Architecture for Efficient Deep Symbolic Regression IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2024.344302744:2(737-750)Online publication date: Feb-2025
  • (2025)MMSRInformation Fusion10.1016/j.inffus.2024.102681114:COnline publication date: 1-Feb-2025
  • (2024)LLM and simulation as bilevel optimizersProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693451(33940-33962)Online publication date: 21-Jul-2024
  • Show More Cited By
  1. Multiple regression genetic programming

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    GECCO '14: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation
    July 2014
    1478 pages
    ISBN:9781450326629
    DOI:10.1145/2576768
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 12 July 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. genetic programming
    2. multiple regression

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    GECCO '14
    Sponsor:
    GECCO '14: Genetic and Evolutionary Computation Conference
    July 12 - 16, 2014
    BC, Vancouver, Canada

    Acceptance Rates

    GECCO '14 Paper Acceptance Rate 180 of 544 submissions, 33%;
    Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)77
    • Downloads (Last 6 weeks)9
    Reflects downloads up to 03 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025) Harmonia : A Unified Architecture for Efficient Deep Symbolic Regression IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2024.344302744:2(737-750)Online publication date: Feb-2025
    • (2025)MMSRInformation Fusion10.1016/j.inffus.2024.102681114:COnline publication date: 1-Feb-2025
    • (2024)LLM and simulation as bilevel optimizersProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693451(33940-33962)Online publication date: 21-Jul-2024
    • (2024)A neural-guided dynamic symbolic network for exploring mathematical expressions from dataProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693202(28222-28242)Online publication date: 21-Jul-2024
    • (2024)M5GP: Parallel Multidimensional Genetic Programming with Multidimensional Populations for Symbolic RegressionMathematical and Computational Applications10.3390/mca2902002529:2(25)Online publication date: 18-Mar-2024
    • (2024)Evolving Form and Function: Dual-Objective Optimization in Neural Symbolic Regression NetworksProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3654030(277-285)Online publication date: 14-Jul-2024
    • (2024)SR-Forest: A Genetic Programming-Based Heterogeneous Ensemble Learning MethodIEEE Transactions on Evolutionary Computation10.1109/TEVC.2023.324317228:5(1484-1498)Online publication date: Oct-2024
    • (2024)Automatically Evolving Interpretable Feature Vectors Using Genetic Programming for an Ensemble Classifier in Skin Cancer DetectionIEEE Computational Intelligence Magazine10.1109/MCI.2024.340134219:3(26-41)Online publication date: Aug-2024
    • (2024)Modeling CO2 loading capacity of triethanolamine aqueous solutions using advanced white-box approaches: GMDH, GEP, and GPDiscover Applied Sciences10.1007/s42452-024-05674-y6:2Online publication date: 29-Jan-2024
    • (2024)Harnessing data using symbolic regression methods for discovering novel paradigms in physicsScience China Physics, Mechanics & Astronomy10.1007/s11433-023-2346-267:6Online publication date: 30-Apr-2024
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media