Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2591796.2591844acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Approximation algorithms for bipartite matching with metric and geometric costs

Published: 31 May 2014 Publication History

Abstract

Let G = G(AB,A×B), with |A| = |B| = n, be a weighted bipartite graph, and let d(·,·) be the cost function on the edges. Let w(M) denote the weight of a matching in G, and M* a minimum-cost perfect matching in G. We call a perfect matching M c-approximate, for c ≥ 1, if w(M) ≤ c · w(M*). We present three approximation algorithms for computing minimum-cost perfect matchings in G.
First, we consider the case when d(·,·) is a metric. For any δ > 0, we present an algorithm that, in O(n2+δ log n log2(1/δ)) time, computes a O(1/δα)-approximate matching of G, where α = log3 2 ≈ 0.631. Next, we assume the existence of a dynamic data structure for answering approximate nearest neighbor (ANN) queries under d(··). Given two parameters ε, &delta ∈ (0, 1), we present an algorithm that, in O(ε---2n1+δτ (n, ε) log2(n/ε) log(1/δ)) time, computes a O(1/δα)-approximate matching of G, where α = 1 + log2(1 + ε) and τ (n; ε) is the query and update time of an (ε/2)-ANN data structure.
Finally, we present an algorithm that works even if d(·,·) is not a metric but admits an ANN data structure for d(·,·). In particular, we present an algorithm that computes, in O(ε---1n3/2τ (n, ε) log4(n/ε) log Δ) time, a (1 + ε)-approximate matching of A and B; here Δ is the ratio of the largest to the smallest-cost edge in G, and τ (n, ε) is the query and update time of an (ε/c)-ANN data structure for some constant c > 1.
We show that our results lead to faster matching algorithms for many geometric settings.

Supplementary Material

MP4 File (p555-sidebyside.mp4)

References

[1]
P. K. Agarwal, A. Efrat, and M. Sharir, Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications, SIAM J. Comput., 29 (1999), 39--50.
[2]
P. K. Agarwal and K. R. Varadarajan, A near-linear constant-factor approximation for euclidean bipartite matching?, Proc. 12th Annual Sympos. Comput. Geom., 2004, pp. 247--252.
[3]
A. Andoni, P. Indyk, and R. Krauthgamer, Earth mover distance over high-dimensional spaces, Proc. 19th Annual ACM-SIAM Sympos. Discrete Algo., 2008, pp. 343--352.
[4]
S. Arora, Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems, J. ACM, 45 (1998), 753--782.
[5]
D. Avis, Two greedy heuristics for the weighted matching problem, Proc. of 9th S. E. Conf. on Comb., Graph Theory, and Computing, 1978, pp. 65--76.
[6]
H.-T. Chen, H.-H. Lin, and T.-L. Liu, Multi-object tracking using dynamical graph matching, IEEE Conference Comp. Vision Pattern Recog., 2 (2001), 210.
[7]
R. Cole, R. Hariharan, M. Lewenstein, and E. Porat, A faster implementation of the Goemans-Williamson clustering algorithm., Proc. 11th Annual Sympos. Discrete Algo., 2001, pp. 17--25.
[8]
M. Cygan, H. N. Gabow, and P. Sankowski, Algorithmic applications of Baur-Strassen's theorem: Shortest cycles, diameter and matchings, Proc. 54th Annual IEEE Sympos. Found. Comp. Sci., 2012, pp. 531--540.
[9]
R. Duan and S. Pettie, Linear-time approximation for maximum weight matching, J. ACM, 61 (2014), 1:1--1:23.
[10]
D. Eppstein, Dynamic euclidean minimum spanning trees and extrema of binary functions, Discrete Comput. Geom., 13 (1995), 111--122.
[11]
J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary metrics by tree metrics, Proc. 35th Annual ACM Sympos. Theory Comput., 2003, pp. 448--455.
[12]
M. L. Fredman and R. E. Tarjan, Fibonacci heaps and their uses in improved network optimization algorithms, J. ACM, 34 (1987), 596--615.
[13]
H. Gabow and S. Pettie, The dynamic vertex minimum problem and its application to clustering-type approximation algorithms, in: Proc. 8th Scandinavian Workshop Algo. Theory, 2002, pp. 190--199.
[14]
H. N. Gabow and R. Tarjan, Faster scaling algorithms for network problems, SIAM J. Comput., 18 (1989), 1013--1036.
[15]
H. N. Gabow and R. E. Tarjan, Faster scaling algorithms for general graph-matching problems, J. ACM, 38 (1991), 815--853.
[16]
A. Goel, P. Indyk, and K. Varadarajan, Reductions among high dimensional proximity problems, Proc. 12th Annual ACM-SIAM Sympos. Discrete Algo., 2001, pp. 769--778.
[17]
A. Goel, M. Kapralov, and S. Khanna, Perfect matchings in O(n log n) time in regular bipartite graphs, Proc. 42nd Annual Sympos. Theory Comput., 2010, pp. 39--46.
[18]
M. Goemans and D. Williamson, A general approximation technique for constrained forest problems, SIAM J. Comput., 24 (1995), 296--317.
[19]
S. Har-Peled, Geometric Approximation Algorithms, American Mathematical Society, 2011.
[20]
J. Hopcroft and R. Karp, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput., 2 (1973), 225--231.
[21]
P. Indyk, A near linear time constant factor approximation for Euclidean bichromatic matching (cost), Proc. 18th Annual ACM-SIAM Sympos. Discrete Algo., 2007, pp. 39--42.
[22]
A. Madry, Navigating central path with electrical ows: from dlows to matchings, and back point clouds, Proc. 54th Annual IEEE Sympos Foundat. Comp. Sc., 2013, pp. 253--262.
[23]
S. Micali and V. V. Vazirani, An o(sqrt(v)e) algorithm for finding maximum matching in general graphs, Proc. 21st Annual IEEE Sympos. Foundat. Comp. Sc., 1980, pp. 17--27.
[24]
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Prentice-Hall, Inc., 1982.
[25]
D. A. Plaisted, Heuristic matching for graphs satisfying the triangle inequality, J. Algorithms, 5 (1984), 163--179.
[26]
E. M. Reingold and R. E. Tarjan, On a greedy heuristic for complete matching, SIAM J. Comput., (1981),676--681.
[27]
P. Sankowski, Weighted bipartite matching in matrix multiplication time, in: Proc. 33rd Intn. Conf. Automata, Languages and Programming, Vol. 4051, 2006, pp. 274--285.
[28]
P. Sankowski, Maximum weight bipartite matching in matrix multiplication time, Theo. Comput. Sci., 410 (2009), 4480--4488.
[29]
R. Sharathkumar, A sub-quadratic algorithm for bipartite matching of planar points with bounded integer coordinates, Proc. 29th Annual Sympos. Comput. Geom., 2013, pp. 9--16.
[30]
R. Sharathkumar and P. K. Agarwal, Algorithms for transportation problem in geometric settings, Proc. 23rd Annual ACM-SIAM Sympos. Discrete Algo., 2012, pp. 306--317.
[31]
R. Sharathkumar and P. K. Agarwal, A near-linear time approximation algorithm for geometric biparitte matching., Proc. 44th Annual ACM Annual Sympos. Theory Comput., 2012, pp. 385--394.
[32]
P. M. Vaidya, Geometry helps in matching, SIAM J. Comput., 18 (1989), 1201--1225.
[33]
K. R. Varadarajan, A divide-and-conquer algorithm for min-cost perfect matching in the plane, Proc. 39th Annual IEEE Sympos. Foundat. Comp. Sc., 1998, pp. 320--331.
[34]
K. R. Varadarajan and P. K. Agarwal, Approximation algorithms for bipartite and non-bipartite matching in the plane, Proc. 10th Annual ACM-SIAM Sympos. Discrete Algo., 1999, pp. 805--814.

Cited By

View all
  • (2024)Approximate Earth Mover’s Distance in Truly-Subquadratic TimeProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649629(47-58)Online publication date: 10-Jun-2024
  • (2024)Towards optimal running times for optimal transportOperations Research Letters10.1016/j.orl.2023.11.00752:COnline publication date: 16-May-2024
  • (2023)Koios: Top-k Semantic Overlap Set Search2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00121(1531-1543)Online publication date: Apr-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC '14: Proceedings of the forty-sixth annual ACM symposium on Theory of computing
May 2014
984 pages
ISBN:9781450327107
DOI:10.1145/2591796
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 31 May 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. approximation algorithms
  2. matching

Qualifiers

  • Research-article

Funding Sources

Conference

STOC '14
Sponsor:
STOC '14: Symposium on Theory of Computing
May 31 - June 3, 2014
New York, New York

Acceptance Rates

STOC '14 Paper Acceptance Rate 91 of 319 submissions, 29%;
Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)73
  • Downloads (Last 6 weeks)2
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Approximate Earth Mover’s Distance in Truly-Subquadratic TimeProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649629(47-58)Online publication date: 10-Jun-2024
  • (2024)Towards optimal running times for optimal transportOperations Research Letters10.1016/j.orl.2023.11.00752:COnline publication date: 16-May-2024
  • (2023)Koios: Top-k Semantic Overlap Set Search2023 IEEE 39th International Conference on Data Engineering (ICDE)10.1109/ICDE55515.2023.00121(1531-1543)Online publication date: Apr-2023
  • (2023)A deterministic near-linear time approximation scheme for geometric transportation2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00078(1301-1315)Online publication date: 6-Nov-2023
  • (2022)Method for persistent topological features extraction of schizophrenia patients’ electroencephalography signal based on persistent homologyFrontiers in Computational Neuroscience10.3389/fncom.2022.102420516Online publication date: 5-Oct-2022
  • (2022)On universally consistent and fully distribution-free rank tests of vector independenceThe Annals of Statistics10.1214/21-AOS215150:4Online publication date: 1-Aug-2022
  • (2022)Bipartite MatchingACM SIGMOD Record10.1145/3542700.354271351:1(51-58)Online publication date: 1-Jun-2022
  • (2022)Deterministic, near-linear 𝜀-approximation algorithm for geometric bipartite matchingProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3519977(1052-1065)Online publication date: 9-Jun-2022
  • (2021)Optimizing bipartite matching in real-world applications by incremental cost computationProceedings of the VLDB Endowment10.14778/3450980.345098314:7(1150-1158)Online publication date: 12-Apr-2021
  • (2020)Algorithms and Hardness for Linear Algebra on Geometric Graphs2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS46700.2020.00057(541-552)Online publication date: Nov-2020
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media