Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Linear-Time Approximation for Maximum Weight Matching

Published: 01 January 2014 Publication History

Abstract

The maximum cardinality and maximum weight matching problems can be solved in Õ(mn) time, a bound that has resisted improvement despite decades of research. (Here m and n are the number of edges and vertices.) In this article, we demonstrate that this “mn barrier” can be bypassed by approximation. For any ε > 0, we give an algorithm that computes a (1 − ε)-approximate maximum weight matching in O(−1 log ε−1) time, that is, optimal linear time for any fixed ε. Our algorithm is dramatically simpler than the best exact maximum weight matching algorithms on general graphs and should be appealing in all applications that can tolerate a negligible relative error.

References

[1]
Alt, H., Blum, N., Mehlhorn, K., and Paul, M. 1991. Computing a maximum cardinality matching in a bipartite graph in time O(n1.5m/log n). Inf. Proc. Lett. 37, 4, 237--240.
[2]
Anderson, T., Owicki, S., Saxe, J., and Thacker, C. 1993. High speed switch scheduling for local area networks. ACM Trans. Comput. Syst. 11, 4, 319--352.
[3]
Andersson, A., Hagerup, T., Nilsson, S., and Raman, R. 1998. Sorting in linear time? J. Comput. Syst. Sci. 57, 1, 74--93.
[4]
Avis, D. 1978. Two greedy heuristics for the weighted matching problems. In Proceedings of the 9th Southeast Conference on Combinatorics, Graph Theory, and Computing (CongrNumer XXI). 65--76.
[5]
Avis, D. 1983. A survey of heuristics for the weighted matching problem. Networks 13, 475--493.
[6]
Balinski, M. L. 1969. Labelling to obtain a maximum matching. In Combinatorial Mathematics and Its Applications, R. C. Bose and T. A. Downing Eds., University of North Carolina Press, 585--602.
[7]
Bertsekas, D. P. 1981. A new algorithm for the assignment problem. Math. Prog. 21, 152--171.
[8]
Birkhoff, G. 1946. Tres observaciones sobre el elgebra lineal. Universidad Nacional de Tucuman, Revista A 5, 1--2, 147--151.
[9]
Brogden, H. E. 1946. An approach to the problem of differential prediction. Psychometrika 11, 3, 139--154.
[10]
Brown, G. and von Neumann, J. 1950. Solutions of games by differential equations. In Contributions to the Theory of Games, H. Kuhn and A. Tucker Eds., Annals of Mathematical Studies Series, vol. 24. Princeton University Press, 73--79.
[11]
Cheriyan, J. and Mehlhorn, K. 1996. Algorithms for dense graphs and networks on the random access computer. Algorithmica 15, 6, 521--549.
[12]
Christofides, N. 1976. Worst case analysis of a new heuristic for the travelling salesman problem. Tech. rep., Graduate School of Industrial Administration, Carnegie Mellon University.
[13]
Cole, R., Hariharan, R., Lewenstein, M., and Porat, E. 2001. A faster implementation of the Goemans-Williamson clustering algorithm. In Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms (SODA). 17--25.
[14]
Cunningham, W. H. and Marsh, III, A. B. 1978. A primal algorithm for optimum matching. Math. Prog. Study 8, 50--72.
[15]
Cygan, M., Gabow, H. N., and Sankowski, P. 2012. Algorithmic applications of Baur-Strassen’s theorem: Shortest cycles, diameter and matchings. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS). 531--540.
[16]
Dantzig, G. B. 1951. Application of the simplex method to the transportation problem. In Activity Analysis of Production and Allocation, Cowles Commission Monograph 13, T. C. Koopmans Ed., Wiley, New York, 359--373.
[17]
Desler, J. F. and Hakimi, S. L. 1969. A graph-theoretic approach to a class of integer-programming problems. Oper. Res. 17, 6, 1017--1033.
[18]
Dijkstra, E. W. 1959. A note on two problems in connexion with graphs. Numer. Math. 1, 269--271.
[19]
Dinic, E. A. 1970. Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Math. Dokl. 11, 1277--1280.
[20]
Dinic, E. A. and Kronrod, M. A. 1969. An algorithm for the solution of the assignment problem. Soviet Math. Dokl. 10, 6, 1324--1326.
[21]
Drake, D. and Hougardy, S. 2003a. Improved linear time approximation algorithms for weighted matchings. In Proceedings of the 7th International Workshop on Randomization and Approximation Techniques in Computer Science (APPROX). Lecture Notes in Computer Science, vol. 2764, Springer. 14--23.
[22]
Drake, D. and Hougardy, S. 2003b. A simple approximation algorithm for the weighted matching problem. Inf. Proc. Lett. 85, 211--213.
[23]
Duan, R. and Pettie, S. 2010. Approximating maximum weight matching in near-linear time. In Proceedings of the 51st IEEE Symposium on Foundations of Computer Science (FOCS). 673--682.
[24]
Duan, R. and Su, H.-H. 2012. A scaling algorithm for maximum weight matching in bipartite graphs. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA). 1413--1424.
[25]
Duff, I. S. and Gilbert, J. R. 2002. Maximum-weighted matching and block pivoting for symmetric indefinite systems. In Householder Symposium XV Book of Abstracts, 73--75.
[26]
Easterfield, T. E. 1946. A combinatorial algorithm. J. London Math. Soc. 21, 219--226. (Republished as: An algorithm for the allocation problem, Oper. Res. 11, 3, 123--129, 1960.)
[27]
Edmonds, J. 1965a. Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. Stand. Sect. B 69B, 125--130.
[28]
Edmonds, J. 1965b. Paths, trees, and flowers. Canad. J. Math. 17, 449--467.
[29]
Edmonds, J. and Johnson, E. L. 1973. Matching, Euler tours, and the Chinese postman. Math. Prog. 5, 88--124.
[30]
Edmonds, J. and Karp, R. M. 1972. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 2, 248--264.
[31]
Feder, T. and Motwani, R. 1995. Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci. 51, 2, 261--272.
[32]
Ford, L. R. and Fulkerson, D. R. 1962. Flows in Networks. Princeton University Press.
[33]
Fredman, M. L. and Tarjan, R. E. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 3, 596--615.
[34]
Gabow, H. N. 1974. Implementation of algorithms for maximum matching on nonbipartite graphs. Ph.D. thesis, Stanford University.
[35]
Gabow, H. N. 1985a. A scaling algorithm for weighted matching on general graphs. In Proceedings of the 26th IEEE Symposium on Foundations of Computer Science (FOCS). 90--100.
[36]
Gabow, H. N. 1985b. Scaling algorithms for network problems. J. Comput. Syst. Sci. 31, 2, 148--168.
[37]
Gabow, H. N. 1990. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 434--443.
[38]
Gabow, H. N. and Pettie, S. 2002. The dynamic vertex minimum problem and its application to clustering-type approximation algorithms. In Proceedings of the 8th Scandinavian Workshop on Algorithm Theory (SWAT). 190--199.
[39]
Gabow, H. N. and Tarjan, R. E. 1985. A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30, 2, 209--221.
[40]
Gabow, H. N. and Tarjan, R. E. 1989. Faster scaling algorithms for network problems. SIAM J. Comput. 18, 5, 1013--1036.
[41]
Gabow, H. N. and Tarjan, R. E. 1991. Faster scaling algorithms for general graph-matching problems. J. ACM 38, 4, 815--853.
[42]
Gabow, H. N., Galil, Z., and Spencer, T. H. 1989. Efficient implementation of graph algorithms using contraction. J. ACM 36, 3, 540--572.
[43]
Galil, Z., Micali, S., and Gabow, H. N. 1986. An O(EV log V) algorithm for finding a maximal weighted matching in general graphs. SIAM J. Comput. 15, 1, 120--130.
[44]
Giaccone, P., Leonardi, E., and Shah, D. 2005. On the maximal throughput of networks with finite buffers and its application to buffered crossbars. In Proceedings of the 24th INFOCOM. Vol. 2, 971--980.
[45]
Gleyzal, A. 1955. An algorithm for solving the transportation problem. J. Res. Nat. Bur. Standards 54, 4, 213--216.
[46]
Goemans, M. X. and Williamson, D. P. 1995. A general approximation technique for constrained forest problems. SIAM J. Comput. 24, 2, 296--317.
[47]
Goldberg, A. V. and Karzanov, A. V. 2004. Maximum skew-symmetric flows and matchings. Math. Program., Ser. A 100, 537--568.
[48]
Goldberg, A. V. and Kennedy, R. 1997. Global price updates help. SIAM J. Disc. Math. 10, 4, 551--572.
[49]
Hadlock, F. 1975. Finding a maximum cut of a planar graph in polynomial time. SIAM J. Comput. 4, 3, 221--225.
[50]
Hagemann, M. and Schenk, O. 2006. Weighted matchings for preconditioning symmetric indefinite linear systems. SIAM J. Sci. Comput. 28, 2, 403--420.
[51]
Han, Y. 2002. Deterministic sorting in O(n log log n) time and linear space. In Proceedings of the 34th ACM Symposium on Theory of Computing (STOC). 602--608.
[52]
Hanke, S. and Hougardy, S. 2010. New approximation algorithms for the weighted matching problem. Research rep. No. 101010, Research Institute for Discrete Mathematics, University of Bonn.
[53]
Harvey, N. 2009. Algebraic algorithms for matching and matroid problems. SIAM J. Comput. 39, 2, 679--702.
[54]
Hendrickson, B. and Leland, R. 1995. The Chaco user’s guide: Version 2.0. Tech. rep. SAND94--2344, Sandia National Laboratories.
[55]
Hitchcock, F. L. 1941. The distribution of a product from several sources to numerous localities. J. Math. Phys. 20, 224--230.
[56]
Hoffman, A. J. and Markowitz, H. M. 1963. A note on shortest path, assignment, and transportation problems. Naval Res. Logistics Quart. 10, 1, 375--379.
[57]
Holtgrewe, M., Sanders, P., and Schulz, C. 2010. Engineering a scalable high quality graph partitioner. In Proceedings of the 24th IEEE Symposium on Parallel and Distributed Processing (IPDPS). 1--12.
[58]
Hopcroft, J. E. and Karp, R. M. 1973. An n5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. 2, 225--231.
[59]
Huang, C.-C. and Kavitha, T. 2012. Efficient algorithms for maximum weight matchings in general graphs with small edge weights. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA). 1400--1412.
[60]
Ibarra, O. H. and Moran, S. 1981. Deterministic and probabilistic algorithms for maximum bipartite matching via fast matrix multiplication. Inf. Proc. Lett. 13, 1, 12--15.
[61]
Iri, M., Murota, K., and Matsui, S. 1983. Heuristics for planar minimum-weight perfect matchings. Networks 13, 1, 67--92.
[62]
Johnson, D. B. 1975. Priority queues with update and finding minimum spanning trees. Inf. Proc. Lett. 4, 3, 53--57.
[63]
Kantorovitch, L. 1942. On the translocation of masses. Doklady Akad. Nauk SSSR 37, 199--201.
[64]
Kao, M.-Y., Lam, T.-K., Sung, W.-K., and Ting, H.-F. 2001. A decomposition theorem for maximum weight bipartite matchings. SIAM J. Comput. 31, 1, 18--26.
[65]
Karypis, G. and Kumar, V. 1998. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 1, 359--392.
[66]
Karzanov, A. V. 1973. An exact estimate of an algorithm for finding a maximum flow, applied to the problem “on representatives” {in Russian}. Probl. Cybernetics 5, 66--70. (English translation available at the author’s website.)
[67]
Karzanov, A. V. 1976. Efficient implementations of Edmonds’ algorithms for finding matchings with maximum cardinality and maximum weight. In Studies in Discrete Optimization, A. A. Fridman Ed., Nauka, Moscow, 306--327.
[68]
Kuhn, H. W. 1955a. The Hungarian method for the assignment problem. Naval Res. Log. Quart. 2, 83--97.
[69]
Kuhn, H. W. 1955b. On combinatorial properties of matrices. George Washington University Logistics Papers 11, 1--11. (English translation of J. Egerváry, Matrixok kombinatorius tulajdonságairól, Matematikai és Fizikai Lapok 38, 16--28, 1931.)
[70]
Kuhn, H. W. 1956. Variants of the Hungarian method for assignment problems. Naval Res. Log. Quart. 3, 253--258.
[71]
Kuhn, H. W. and Baumol, W. J. 1962. An approximate algorithm for the fixed-charges transportation problem. Naval Res. Log. Quart. 9, 1--15.
[72]
Kurtzberg, J. M. 1962. On approximation methods for the assignment problem. J. ACM 9, 4, 419--439.
[73]
Kwan, M. K. 1962. Graphic programming using odd or even points. Chinese Math. 1, 273--277.
[74]
Lawler, E. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart & Winston, New York.
[75]
Leonardi, E., Mellia, M., Neri, F., and Marsan, M. A. 2003. Bounds on delays and queue lengths in input-queued cell switches. J. ACM 50, 4, 520--550.
[76]
McKeown, N. 1999. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM Trans. Netw. 7, 2, 188--201.
[77]
McKeown, N., Anantharam, V., and Walrand, J. C. 1996. Achieving 100% throughput in an input-queued switch. In Proceedings of the 15th INFOCOM. 296--302.
[78]
Micali, S. and Vazirani, V. V. 1980. An O(√|V| · |E|) algorithm for finding maximum matching in general graphs. In Proceedings of the 21st IEEE Symposium on Foundations of Computer Science (FOCS). 17--27.
[79]
Motzkin, T. S. 1956. The assignment problem. In Proceedings of the Symposia in Applied Mathematics VI, Numerical Analysis, 109--125.
[80]
Mucha, M. and Sankowski, P. 2004. Maximum matchings via Gaussian elimination. In Proceedings of the 45th IEEE Symposium on Foundations of Computer Science (FOCS). 248--255.
[81]
Munkres, J. 1957. Algorithms for the assignment and transportation problems. J. Soc. Indust. Appl. Math. 5, 32--38.
[82]
Ollivier, F. 2009. Looking for the order of a system of arbitrary ordinary differential equations. Appl. Algebra Eng. Commun. Comput. 20, 1, 7--32. (English translation of: C. G. J. Jacobi, De investigando ordine systematis aequationum differentialum vulgarium cujuscunque, Borchardt Journal für die reine und angewandte Mathematik 65, 4, pp. 297--320, 1865.)
[83]
Olschowka, M. and Neumaier, A. 1996. A new pivoting strategy for Gaussian elimination. Linear Algebra Appl. 240, 131--151.
[84]
Orlin, J. B. and Ahuja, R. K. 1992. New scaling algorithms for the assignment and minimum mean cycle problems. Math. Program. 54, 41--56.
[85]
Orlova, G. I. and Dorfman, Y. G. 1972. Finding the maximum cut in a planar graph. Eng. Cybernet. 10, 502--506.
[86]
Pellegrini, F. 2008. SCOTCH 5.1 user’s guide. Technical report, LaBRI.
[87]
Pettie, S. 2005. Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. In Proceedings of the 16th International Symposium on Algorithms and Computation (ISAAC). 964--973.
[88]
Pettie, S. 2012. A simple reduction from maximum weight matching to maximum cardinality matching. Inf. Proc. Lett. 112, 23, 893--898.
[89]
Pettie, S. and Sanders, P. 2004. A simpler linear time 2/3 − ε approximation to maximum weight matching. Inf. Proc. Lett. 91, 6, 271--276.
[90]
Preis, R. 1999. Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs. In Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science (STACS). Lecture Notes in Computer Science, vol. 1563, 259--269.
[91]
Preis, R. and Diekmann, R. 1997. PARTY -- A software library for graph partitioning. In Advances in Computational Mechanics with Parallel and Distributed Processing, B. H. V. Topping Ed., Civil-Comp Press, 63--71.
[92]
Ramshaw, L. and Tarjan, R. E. 2012. A weight-scaling algorithm for min-cost imperfect matchings in bipartite graphs. In Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, (FOCS). 581--590.
[93]
Reingold, E. M. and Supowit, K. J. 1983. Probabilistic analysis of divide-and-conquer heuristics for minimum weighted Euclidean matching. Networks 13, 49--66.
[94]
Reingold, E. M. and Tarjan, R. E. 1981. On a greedy heuristic for complete matching. SIAM J. Comput. 10, 4, 676--681.
[95]
Sanders, P. and Schulz, C. 2012. Distributed evolutionary graph partitioning. In Proceedings of the 14th Workshop on Algorithm Engineering and Experiments (ALENEX). 43--54.
[96]
Sankowski, P. 2009. Maximum weight bipartite matching in matrix multiplication time. Theoret. Comput. Sci. 410, 44, 4480--4488.
[97]
Schenk, O., Wächter, A., and Hagemann, M. 2007. Matching-based preprocessing algorithms to the solution of saddle-point problems in large-scale nonconvex interior-point optimization. Comput. Optim. Appl. 36, 2--3, 321--341.
[98]
Shah, D., Giaccone, P., and Prabhakar, B. 2002. Efficient randomized algorithms for input-queued switch scheduling. IEEE Micro 22, 1, 10--18.
[99]
Shah, D. and Kopikare, M. 2002. Delay bounds for the approximate maximum weight matching algorithm for input queued switches. In Proceedings of the 21st INFOCOM. 1024--1031.
[100]
Sharathkumar, R. and Agarwal, P. K. 2012. A near-linear time ε-approximation algorithm for geometric bipartite matching. In Proceedings of the 44th Symposium on Theory of Computing Conference (STOC). 385--394.
[101]
Thorndike, R. L. 1950. The problem of classification of personnel. Psychometrika 15, 215--235.
[102]
Thorup, M. 1999. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46, 3, 362--394.
[103]
Thorup, M. 2003. Integer priority queues with decrease key in constant time and the single source shortest paths problem. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC). 149--158.
[104]
Thorup, M. 2007. Equivalence between priority queues and sorting. J. ACM 54, 6.
[105]
Tomizawa, N. 1971. On some techniques useful for solution of transportation network problems. Networks 1, 2, 173--194.
[106]
Varadarajan, K. R. and Agarwal, P. K. 1999. Approximation algorithms for bipartite and non-bipartite matching in the plane. In Proceedings of the 10th ACM-SIAM Symposium on Discrete Algorithms (SODA). 805--814.
[107]
Vazirani, V. V. 1994. A theory of alternating paths and blossoms for proving correctness of the O(√VE) general graph maximum matching algorithm. Combinatorica 14, 1, 71--109.
[108]
Vinkemeier, D. E. D. and Hougardy, S. 2005. A linear-time approximation algorithm for weighted matchings in graphs. ACM Trans. Algor. 1, 1, 107--122.
[109]
von Neumann, J. 1953. A certain zero-sum two-person game equivalent to the optimal assignment problem. In Contributions to the Theory of Games, H. W. Kuhn and A. W. Tucker Eds., Vol. II, Princeton University Press, 5--12.
[110]
Walshaw, C. and Cross, M. 2007. JOSTLE: Parallel multilevel graph-partitioning software -- an overview. In Mesh Partitioning Techniques and Domain Decomposition Techniques, 27--58.
[111]
Williams, V. V. 2012. Multiplying matrices faster than Coppersmith-Winograd. In Proceedings of the 44th Symposium on Theory of Computing Conference (STOC). 887--898.
[112]
Witzgall, C. and Zahn, Jr., C. T. 1965. Modification of Edmonds’ maximum matching algorithm. J. Res. Nat. Bur. Standards Sect. B 69B, 91--98.

Cited By

View all
  • (2025)Merged Path: Distributed Data Dissemination in Mobile Sinks Sensor NetworksIEEE Transactions on Sustainable Computing10.1109/TSUSC.2024.341024710:1(161-175)Online publication date: Jan-2025
  • (2025)Tiered matching model considering quality compatibility in two-sided marketsExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.125835265:COnline publication date: 15-Mar-2025
  • (2025)Euclidean Maximum Matchings in the Plane—Local to GlobalAlgorithmica10.1007/s00453-024-01279-487:1(132-147)Online publication date: 1-Jan-2025
  • Show More Cited By

Index Terms

  1. Linear-Time Approximation for Maximum Weight Matching

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Journal of the ACM
    Journal of the ACM  Volume 61, Issue 1
    January 2014
    222 pages
    ISSN:0004-5411
    EISSN:1557-735X
    DOI:10.1145/2578041
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 January 2014
    Accepted: 01 September 2013
    Revised: 01 September 2013
    Received: 01 December 2011
    Published in JACM Volume 61, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Matching
    2. approximation
    3. assignment

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)218
    • Downloads (Last 6 weeks)26
    Reflects downloads up to 19 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Merged Path: Distributed Data Dissemination in Mobile Sinks Sensor NetworksIEEE Transactions on Sustainable Computing10.1109/TSUSC.2024.341024710:1(161-175)Online publication date: Jan-2025
    • (2025)Tiered matching model considering quality compatibility in two-sided marketsExpert Systems with Applications: An International Journal10.1016/j.eswa.2024.125835265:COnline publication date: 15-Mar-2025
    • (2025)Euclidean Maximum Matchings in the Plane—Local to GlobalAlgorithmica10.1007/s00453-024-01279-487:1(132-147)Online publication date: 1-Jan-2025
    • (2024)Efficient UCB-Based Assignment Algorithm Under Unknown Utility with Application in Mentor-Mentee MatchingJournal of Data Science10.6339/24-JDS1151(1-17)Online publication date: 24-Sep-2024
    • (2024)Multi-agent reinforcement learning with hierarchical coordination for emergency responder stationingProceedings of the 41st International Conference on Machine Learning10.5555/3692070.3693934(45813-45834)Online publication date: 21-Jul-2024
    • (2024)Surge Routing: Event-informed Multiagent Reinforcement Learning for Autonomous RideshareProceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems10.5555/3635637.3662916(641-650)Online publication date: 6-May-2024
    • (2024)Comparing Multiagent Dynamic and Urgent Task Sharing Methods when the Cost of Unexecuted Task Is Highタスク未実行コストが高い状況下でのマルチエージェント間動的緊急タスクシェア手法の比較Transactions of the Japanese Society for Artificial Intelligence10.1527/tjsai.39-6_AG24-F39:6(AG24-F_1-13)Online publication date: 1-Nov-2024
    • (2024)Dynamic Matching with Better-than-2 Approximation in Polylogarithmic Update TimeJournal of the ACM10.1145/367900971:5(1-32)Online publication date: 23-Jul-2024
    • (2024)Maestro: The Analysis-Simulation Integrated Framework for Mixed RealityProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661891(99-112)Online publication date: 4-Jun-2024
    • (2024)A Deadline-Aware Scheduler for Smart Factory using WiFi 6Proceedings of the Twenty-fifth International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing10.1145/3641512.3686387(221-230)Online publication date: 14-Oct-2024
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media