Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.5555/2095116.2095227acmotherconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

A scaling algorithm for maximum weight matching in bipartite graphs

Published: 17 January 2012 Publication History

Abstract

Given a weighted bipartite graph, the maximum weight matching (MWM) problem is to find a set of vertex-disjoint edges with maximum weight. We present a new scaling algorithm that runs in O(mn log N) time, when the weights are integers within the range of [0,N]. The result improves the previous bounds of O(Nmn) by Gabow and O(mn log (nN)) by Gabow and Tarjan over 20 years ago. Our improvement draws ideas from a not widely known result, the primal method by Balinski and Gomory.

References

[1]
M. L. Balinski and R. E. Gomory. A primal method for the assignment and transportation problems. Management Sci., 10(3):578--593, 1964.
[2]
J. Cheriyan and K. Mehlhorn. Algorithms for dense graphs and networks on the random access computer. Algorithmica, 15(6):521--549, 1996.
[3]
D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symb. Comput., 9(3):251--280, 1990.
[4]
R. B. Dial. Algorithm 360: Shortest-path forest with topological ordering. Comm. ACM, 12:632--633, 1969.
[5]
R. P. Dilworth. A decomposition theorem for partially ordered sets. Ann. Math., 51(1):161--166, 1950.
[6]
J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449--467, 1965.
[7]
J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM, 19(2):248--264, 1972.
[8]
T. Feder and R. Motwani. Clique partitions, graph compression and speeding-up algorithms. J. Comput. Syst. Sci., 51(2):261--272, 1995.
[9]
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 34(3):596--615, 1987.
[10]
H. N. Gabow. An efficient implementation of Edmonds' algorithm for maximum matching on graphs. J. ACM, 23(2):221--234, 1976.
[11]
H. N. Gabow. Scaling algorithms for network problems. In Proc. 24th Annual Symposium on Foundations of Computer Science (FOCS), pages 248--257, 1983.
[12]
H. N. Gabow. A scaling algorithm for weighted matching on general graphs. In Proc. 26th Annual Symposium on Foundations of Computer Science (FOCS'85), pages 90--100, 1985.
[13]
H. N. Gabow. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 434--443, 1990.
[14]
H. N. Gabow, Z. Galil, and T. H. Spencer. Efficient implementation of graph algorithms using contraction. J. ACM, 36(3):540--572, 1989.
[15]
H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SIAM J. Comput., 18(5):1013--1036, 1989.
[16]
H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-matching problems. J. ACM, 38(4):815--853, 1991.
[17]
Z. Galil, S. Micali, and H. N. Gabow. An O(EV log V) algorithm for finding a maximal weighted matching in general graphs. SIAM J. Comput., 15(1):120--130, 1986.
[18]
A. V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J. Comput., 24(3):494--504, 1995.
[19]
N. Harvey. Algebraic algorithms for matching and matroid problems. SIAM J. Comput., 39(2):679--702, 2009.
[20]
J. E. Hopcroft and R. M. Karp. An n 5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2:225--231, 1973.
[21]
C. G. J. Jacobi. De investigando ordine systematis aequationum differentialum vulgarium cujuscunque. Borchardt Journal für die reine und angewandte Mathematik, LXIV(4):297--320, 1865. Reproduced in C. G. J. Jacobi's gesammelte Werke, fünfter Band, K. Weierstrass, Ed., Berlin, Bruck und Verlag von Georg Reimer, 1890, pp. 193--216.
[22]
D. B. Johnson. Efficient algorithms for shortest paths in sparse networks. J. ACM, 24(1):1--13, 1977.
[23]
M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. A decomposition theorem for maximum weight bipartite matchings. SIAM J. Comput., 31(1):18--26, 2001.
[24]
H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2:83--97, 1955.
[25]
M. Mucha and P. Sankowski. Maximum matchings via Gaussian elimination. In Proc. 45th Symp. on Foundations of Computer Science (FOCS), pages 248--255, 2004.
[26]
J. Munkres. Algorithms for the assignment and transportation problems. J. Soc. Indust. Appl. Math., 5:32--38, 1957.
[27]
F. Ollivier. Looking for the order of a system of arbitrary ordinary differential equations. Appl. Algebra Eng. Commun. Comput., 20(1):7--32, 2009. English translation of: C. G. J. Jacobi, De investigando ordine systematis aequationum differentialum vulgarium cujuscunque," Borchardt Journal für die reine und angewandte Mathematik 65(4), 1865, pp. 297--320, also reproduced in: C. G. J. Jacobi, Gesammelte Werke, Vol. 5, K. Weierstrass, Ed., Berlin, Bruck und Verlag von Georg Reimer, 1890, pp. 193--216.
[28]
J. B. Orlin and R. K. Ahuja. New scaling algorithms for the assignment and minimum mean cycle problems. Math. Program., 54:41--56, 1992.
[29]
P. Sankowski. Weighted bipartite matching in matrix multiplication time. In Proceedings 33rd Int'l Symposium on Automata, Languages, and Programming (ICALP), pages 274--285, 2006.
[30]
M. Thorup. Equivalence between priority queues and sorting. In Proc. 43rd Symp. on Foundations of Computer Science (FOCS), pages 125--134, 2002.
[31]
M. Thorup. Integer priority queues with decrease key in constant time and the single source shortest paths problem. J. Comput. Syst. Sci., 69(3):330--353, 2004.
[32]
N. Tomizawa. On some techniques useful for solution of transportation network problems. Networks, 1(2):173--194, 1971.

Cited By

View all
  • (2020)Near-optimal multihop scheduling in general circuit-switched networksProceedings of the 16th International Conference on emerging Networking EXperiments and Technologies10.1145/3386367.3432589(31-45)Online publication date: 23-Nov-2020
  • (2018)Scaling Algorithms for Weighted Matching in General GraphsACM Transactions on Algorithms10.1145/315530114:1(1-35)Online publication date: 3-Jan-2018
  • (2018)Costly circuits, submodular schedules and approximate Carathéodory TheoremsQueueing Systems: Theory and Applications10.1007/s11134-017-9546-x88:3-4(311-347)Online publication date: 1-Apr-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
SODA '12: Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms
January 2012
1764 pages

Sponsors

  • Kyoto University: Kyoto University

In-Cooperation

Publisher

Society for Industrial and Applied Mathematics

United States

Publication History

Published: 17 January 2012

Check for updates

Qualifiers

  • Research-article

Conference

SODA '12
Sponsor:
  • Kyoto University

Acceptance Rates

Overall Acceptance Rate 411 of 1,322 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)1
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Near-optimal multihop scheduling in general circuit-switched networksProceedings of the 16th International Conference on emerging Networking EXperiments and Technologies10.1145/3386367.3432589(31-45)Online publication date: 23-Nov-2020
  • (2018)Scaling Algorithms for Weighted Matching in General GraphsACM Transactions on Algorithms10.1145/315530114:1(1-35)Online publication date: 3-Jan-2018
  • (2018)Costly circuits, submodular schedules and approximate Carathéodory TheoremsQueueing Systems: Theory and Applications10.1007/s11134-017-9546-x88:3-4(311-347)Online publication date: 1-Apr-2018
  • (2017)Scaling algorithms for weighted matching in general graphsProceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3039686.3039736(781-800)Online publication date: 16-Jan-2017
  • (2017)Negative-weight shortest paths and unit capacity minimum cost flow in Õ(m10/7 log W) timeProceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3039686.3039734(752-771)Online publication date: 16-Jan-2017
  • (2017)SilkMothProceedings of the VLDB Endowment10.14778/3115404.311541310:10(1082-1093)Online publication date: 1-Jun-2017
  • (2016)Costly Circuits, Submodular Schedules and Approximate Carathéodory TheoremsACM SIGMETRICS Performance Evaluation Review10.1145/2964791.290147944:1(75-88)Online publication date: 14-Jun-2016
  • (2016)Costly Circuits, Submodular Schedules and Approximate Carathéodory TheoremsProceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science10.1145/2896377.2901479(75-88)Online publication date: 14-Jun-2016
  • (2014)Linear-Time Approximation for Maximum Weight MatchingJournal of the ACM10.1145/252998961:1(1-23)Online publication date: 1-Jan-2014
  • (2012)Efficient algorithms for maximum weight matchings in general graphs with small edge weightsProceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms10.5555/2095116.2095226(1400-1412)Online publication date: 17-Jan-2012

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media