Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Costly Circuits, Submodular Schedules and Approximate Carathéodory Theorems

Published: 14 June 2016 Publication History

Abstract

Hybrid switching -- in which a high bandwidth circuit switch (optical or wireless) is used in conjunction with a low bandwidth packet switch -- is a promising alternative to interconnect servers in today's large scale data centers. Circuit switches offer a very high link rate, but incur a non-trivial reconfiguration delay which makes their scheduling challenging. In this paper, we demonstrate a lightweight, simple and nearly-optimal scheduling algorithm that trades-off reconfiguration costs with the benefits of reconfiguration that match the traffic demands. Seen alternatively, the algorithm provides a fast and approximate solution towards a constructive version of Caratheodory's Theorem for the Birkhoff polytope. The algorithm also has strong connections to submodular optimization, achieves a performance at least half that of the optimal schedule and strictly outperforms state of the art in a variety of traffic demand settings. These ideas naturally generalize: we see that indirect routing leads to exponential connectivity; this is another phenomenon of the power of multi-hop routing, distinct from the well-known load balancing effects.

References

[1]
R. Ahuja, T. Magnanti, and J. Orlin. Network flows: theory, algorithms, and applications. Prentice Hall, 1993.
[2]
M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic flow scheduling for data center networks. In NSDI, volume 10, pages 19--19, 2010.
[3]
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data center tcp (dctcp). SIGCOMM, 2011.
[4]
S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta-algorithm and applications. Theory of Computing, 8(1):121--164, 2012.
[5]
Y. Azar and I. Gamzu. Efficient submodular function maximization under linear packing constraints. In Automata, Languages, and Programming, pages 38--50. Springer, 2012.
[6]
S. Barman. Approximating nash equilibria and dense bipartite subgraphs via an approximate version of caratheodory's theorem. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages 361--369. ACM, 2015.
[7]
C. Barnhart and Y. Sheffi. A network-based primal-dual heuristic for the solution of multicommodity network flow problems. Transportation Science, 27(2):102--117, 1993.
[8]
T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the wild. In SIGCOMM, 2010.
[9]
Z. Cao, M. Kodialam, and T. Lakshman. Joint static and dynamic traffic scheduling in data center networks. In INFOCOM, 2014.
[10]
C.-S. Chang, W.-J. Chen, and H.-Y. Huang. Birkhoff-von neumann input buffered crossbar switches. In INFOCOM, 2000.
[11]
C.-S. Chang, D.-S. Lee, and Y.-S. Jou. Load balanced birkhoff-von neumann switches. In High Performance Switching and Routing, 2001 IEEE Workshop on, pages 276--280. IEEE, 2001.
[12]
A. Dasylva and R. Srikant. Optimal wdm schedules for optical star networks. IEEE/ACM Transactions on Networking (TON), 7(3):446--456, 1999.
[13]
R. Duan and S. Pettie. Linear-time approximation for maximum weight matching. J. ACM, 61(1):1:1--1:23, Jan. 2014.
[14]
R. Duan and H.-H. Su. A scaling algorithm for maximum weight matching in bipartite graphs. In SODA, 2012.
[15]
N. Farrington. Optics in data center network architecture. PhD thesis, Citeseer, 2012.
[16]
N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat. Helios: a hybrid electrical/optical switch architecture for modular data centers. SIGCOMM, 2011.
[17]
P. F. Felzenszwalb and R. Zabih. Dynamic programming and graph algorithms in computer vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(4):721--740, 2011.
[18]
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM (JACM), 34(3):596--615, 1987.
[19]
S. Fu, B. Wu, X. Jiang, A. Pattavina, L. Zhang, and S. Xu. Cost and delay tradeoff in three-stage switch architecture for data center networks. In HPSR, 2013.
[20]
N. Garg and J. Koenemann. Faster and simpler algorithms for multicommodity flow and other fractional packing problems. SIAM Journal on Computing, 37(2):630--652, 2007.
[21]
P. Giaccone, B. Prabhakar, and D. Shah. Randomized scheduling algorithms for high-aggregate bandwidth switches. Selected Areas in Communications, IEEE Journal on, 21(4):546--559, 2003.
[22]
I. S. Gopal and C. K. Wong. Minimizing the number of switchings in an ss/tdma system. Communications, IEEE Transactions on, 33(6):497--501, 1985.
[23]
A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Towards a next generation data center architecture: scalability and commoditization. In Proceedings of the ACM workshop on Programmable routers for extensible services of tomorrow, pages 57--62. ACM, 2008.
[24]
M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial optimization. Algorithms and combinatorics. Springer-Verlag, 1993.
[25]
N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and A. Tanwer. Firefly: a reconfigurable wireless data center fabric using free-space optics. In SIGCOMM, 2014.
[26]
T. Inukai. An efficient ss/tdma time slot assignment algorithm. Communications, IEEE Transactions on, 27(10):1449--1455, 1979.
[27]
S. Kandula, J. Padhye, and P. Bahl. Flyways to de-congest data center networks. 2009.
[28]
I. Keslassy, C.-S. Chang, N. McKeown, and D.-S. Lee. Optimal load-balancing. In INFOCOM, 2005.
[29]
I. Keslassy, M. Kodialam, T. Lakshman, and D. Stiliadis. On guaranteed smooth scheduling for input-queued switches. In INFOCOM, 2003.
[30]
T. Leighton, F. Makedon, S. Plotkin, C. Stein, É. Tardos, and S. Tragoudas. Fast approximation algorithms for multicommodity flow problems. Journal of Computer and System Sciences, 50(2):228--243, 1995.
[31]
X. Li and M. Hamdi. On scheduling optical packet switches with reconfiguration delay. Selected Areas in Communications, IEEE Journal on, 21(7):1156--1164, 2003.
[32]
Y. Li, S. Panwar, and H. J. Chao. Frame-based matching algorithms for optical switches. In High Performance Switching and Routing, 2003, HPSR. Workshop on, pages 97--102. IEEE, 2003.
[33]
H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M. Voelker, G. Papen, A. C. Snoeren, and G. Porter. Circuit switching under the radar with reactor. In NSDI, 2014.
[34]
H. Liu, M. K. Mukerjee, C. Li, N. Feltman, G. Papen, S. Savage, S. Seshan, G. M. Voelker, D. G. Andersen, M. Kaminsky, G. Porter, and A. C. Snoeren. Scheduling techniques for hybrid circuit/packet networks. In ACM CoNEXT, 2015.
[35]
N. McKeown. The islip scheduling algorithm for input-queued switches. Networking, IEEE/ACM Transactions on, 7(2):188--201, 1999.
[36]
N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand. Achieving 100% throughput in an input-queued switch. Communications, IEEE Transactions on, 47(8):1260--1267, 1999.
[37]
A. Mekkittikul and N. McKeown. A practical scheduling algorithm to achieve 100% throughput in input-queued switches. In INFOCOM, 1998.
[38]
V. Mirrokni, R. P. Leme, A. Vladu, and S. C.-w. Wong. Tight bounds for approximate carathéodory and beyond. arXiv preprint arXiv:1512.08602, 2015.
[39]
S. Pettie and P. Sanders. A simpler linear time 2/3- $\varepsilon$ approximation for maximum weight matching. Information Processing Letters, 91(6):271--276, 2004.
[40]
G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and A. Vahdat. Integrating microsecond circuit switching into the data center. SIGCOMM, 2013.
[41]
B. Prabhakar and N. McKeown. On the speedup required for combined input-and output-queued switching. Automatica, 35(12):1909--1920, 1999.
[42]
M. O. Rabin. Efficient dispersal of information for security, load balancing, and fault tolerance. Journal of the ACM (JACM), 36(2):335--348, 1989.
[43]
A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the social network's (datacenter) network. In SIGCOMM, 2015.
[44]
A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
[45]
A. Shieh, S. Kandula, A. G. Greenberg, and C. Kim. Seawall: Performance isolation for cloud datacenter networks. In HotCloud, 2010.
[46]
A. Singla, A. Singh, and Y. Chen. Osa: An optical switching architecture for data center networks with unprecedented flexibility. In NSDI, 2012.
[47]
R. Srikant and L. Ying. Communication Networks: An Optimization, Control and Stochastic Networks Perspective. Cambridge University Press, New York, NY, USA, 2014.
[48]
B. Towles and W. J. Dally. Guaranteed scheduling for switches with configuration overhead. Networking, IEEE/ACM Transactions on, 11(5):835--847, 2003.
[49]
L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103--111, 1990.
[50]
S. B. Venkatakrishnan, M. Alizadeh, and P. Viswanath. Costly circuits, submodular schedules: Hybrid switch scheduling for data centers. CoRR, abs/1512.01271, 2015.
[51]
C.-H. Wang and T. Javidi. Adaptive policies for scheduling with reconfiguration delay: An end-to-end solution for all-optical data centers. arXiv preprint arXiv:1511.03417, 2015.
[52]
C.-H. Wang, T. Javidi, and G. Porter. End-to-end scheduling for all-optical data centers. In Computer Communications (INFOCOM), 2015 IEEE Conference on, pages 406--414. IEEE, 2015.
[53]
G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki, T. Ng, M. Kozuch, and M. Ryan. c-through: Part-time optics in data centers. SIGCOMM, 2011.
[54]
B. Wu and K. L. Yeung. Nxg05--6: Minimum delay scheduling in scalable hybrid electronic/optical packet switches. In GLOBECOM, 2006.
[55]
B. Wu, K. L. Yeung, and X. Wang. Nxg06--4: Improving scheduling efficiency for high-speed routers with optical switch fabrics. In GLOBECOM, 2006.
[56]
X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror mirror on the ceiling: Flexible wireless links for data centers. SIGCOMM, 2012.

Cited By

View all
  • (2024)Interruptible Scheduling of Partially Re-Configurable Optical Switching in Data Center NetworksJournal of Lightwave Technology10.1109/JLT.2023.334104242:7(2212-2224)Online publication date: 1-Apr-2024
  • (2024)P4ToR: Conflict-Free Distributed Scheduling for Hybrid Optical/Electrical Datacenter NetworksIEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)10.1109/INFOCOMWKSHPS61880.2024.10620800(1-2)Online publication date: 20-May-2024
  • (2024)Approximation Algorithms for Minimizing Congestion in Demand-Aware NetworksIEEE INFOCOM 2024 - IEEE Conference on Computer Communications10.1109/INFOCOM52122.2024.10621340(1461-1470)Online publication date: 20-May-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGMETRICS Performance Evaluation Review
ACM SIGMETRICS Performance Evaluation Review  Volume 44, Issue 1
Performance evaluation review
June 2016
409 pages
ISSN:0163-5999
DOI:10.1145/2964791
Issue’s Table of Contents
  • cover image ACM Conferences
    SIGMETRICS '16: Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science
    June 2016
    434 pages
    ISBN:9781450342667
    DOI:10.1145/2896377
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 14 June 2016
Published in SIGMETRICS Volume 44, Issue 1

Check for updates

Author Tags

  1. caratheodory theorem
  2. circuit switch
  3. datacenters
  4. hybrid networks
  5. packet switch

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)201
  • Downloads (Last 6 weeks)27
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Interruptible Scheduling of Partially Re-Configurable Optical Switching in Data Center NetworksJournal of Lightwave Technology10.1109/JLT.2023.334104242:7(2212-2224)Online publication date: 1-Apr-2024
  • (2024)P4ToR: Conflict-Free Distributed Scheduling for Hybrid Optical/Electrical Datacenter NetworksIEEE INFOCOM 2024 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)10.1109/INFOCOMWKSHPS61880.2024.10620800(1-2)Online publication date: 20-May-2024
  • (2024)Approximation Algorithms for Minimizing Congestion in Demand-Aware NetworksIEEE INFOCOM 2024 - IEEE Conference on Computer Communications10.1109/INFOCOM52122.2024.10621340(1461-1470)Online publication date: 20-May-2024
  • (2023)FactoryDC: Network and Resource Planning for Emerging Applications in Future FactoriesProceedings of the 1st Workshop on Enhanced Network Techniques and Technologies for the Industrial IoT to Cloud Continuum10.1145/3609389.3610564(1-7)Online publication date: 10-Sep-2023
  • (2023)Enabling Quasi-Static Reconfigurable Networks With Robust Topology EngineeringIEEE/ACM Transactions on Networking10.1109/TNET.2022.321053431:3(1056-1070)Online publication date: Jun-2023
  • (2022)On the Benefits of Joint Optimization of Reconfigurable CDN-ISP InfrastructureIEEE Transactions on Network and Service Management10.1109/TNSM.2021.311913419:1(158-173)Online publication date: Mar-2022
  • (2022)Asynchronous Optical Traffic Offloading of Hybrid Optical/Electrical Data Center NetworksIEEE Transactions on Cloud Computing10.1109/TCC.2020.299248910:2(805-820)Online publication date: 1-Apr-2022
  • (2021)A Survey of Reconfigurable Optical NetworksOptical Switching and Networking10.1016/j.osn.2021.100621(100621)Online publication date: Mar-2021
  • (2019)Survey of Reconfigurable Data Center NetworksACM SIGACT News10.1145/3351452.335146450:2(62-79)Online publication date: 24-Jul-2019
  • (2019)LESSProceedings of the 12th IEEE/ACM International Conference on Utility and Cloud Computing10.1145/3344341.3368807(187-197)Online publication date: 2-Dec-2019
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media