Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Scaling Algorithms for Weighted Matching in General Graphs

Published: 03 January 2018 Publication History

Abstract

We present a new scaling algorithm for maximum (or minimum) weight perfect matching on general, edge weighted graphs. Our algorithm runs in O(mnlog(nN)) time, O(mn) per scale, which matches the running time of the best cardinality matching algorithms on sparse graphs [16, 20, 36, 37]. Here, m,n, and N bound the number of edges, vertices, and magnitude, respectively, of any integer edge weight. Our result improves on a 25-year-old algorithm of Gabow and Tarjan, which runs in O(mnlog nα (m,n) log(nN)) time.

References

[1]
G. Birkhoff. 1946. Tres observaciones sobre el elgebra lineal. Universidad Nacional de Tucuman, Revista A 5, 1--2, 147--151.
[2]
M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu. 2017. Negative-weight shortest paths and unit capacity minimum cost flow in time. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17). 752--771.
[3]
W. H. Cunningham and A. B. Marsh, III. 1978. A primal algorithm for optimum matching. Math. Program. Study 8, 50--72.
[4]
M. Cygan, H. N. Gabow, and P. Sankowski. 2015. Algorithmic applications of Baur-Strassen’s theorem: Shortest cycles, diameter, and matchings. J. ACM 62, 4, 28.
[5]
R. Duan and S. Pettie. 2014. Linear-time approximation for maximum weight matching. J. ACM 61, 1, 1.
[6]
R. Duan and H.-H. Su. 2012. A scaling algorithm for maximum weight matching in bipartite graphs. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1413--1424.
[7]
J. Edmonds. 1965. Maximum matching and a polyhedron with -vertices. J. Res. Nat. Bur. Stand. Sect. B 69B, 125--130.
[8]
J. Edmonds 1965. Paths, trees, and flowers. Can. J. Math. 17, 449--467.
[9]
J. Edmonds and R. M. Karp 1972. Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 2, 248--264.
[10]
M. L. Fredman and R. E. Tarjan. 1987. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34, 3, 596--615.
[11]
M. L. Fredman and D. E. Willard. 1994. Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Syst. Sci. 48, 3, 533--551.
[12]
H. N. Gabow. 1976. An efficient implementation of Edmonds’ algorithm for maximum matching on graphs. J. ACM 23, 221--234.
[13]
H. N. Gabow. 1985. A scaling algorithm for weighted matching on general graphs. In Proceedings of the 26th Annual Symposium on Foundations of Computer Science (FOCS’85). 90--100.
[14]
H. N. Gabow. 1990. Data structures for weighted matching and nearest common ancestors with linking. In Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’90). 434--443.
[15]
H. N. Gabow. 2016. Data structures for weighted matching and extensions to -matching and -factors. CoRR, abs/1611.07541.
[16]
H. N. Gabow. 2017. The weighted matching approach to maximum cardinality matching. Fundam. Inform. 154, 1--4, 109--130.
[17]
H. N. Gabow, Z. Galil, and T. H. Spencer. 1989. Efficient implementation of graph algorithms using contraction. J. ACM 36, 3, 540--572.
[18]
H. N. Gabow and R. E. Tarjan. 1985. A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci. 30, 2, 209--221.
[19]
H. N. Gabow and R. E. Tarjan. 1989. Faster scaling algorithms for network problems. SIAM J. Comput. 18, 5, 1013--1036.
[20]
H. N. Gabow and R. E. Tarjan. 1991. Faster scaling algorithms for general graph-matching problems. J. ACM 38, 4, 815--853.
[21]
Z. Galil, S. Micali, and H. N. Gabow. 1986. An algorithm for finding a maximal weighted matching in general graphs. SIAM J. Comput. 15, 1, 120--130.
[22]
A. V. Goldberg and R. Kennedy. 1997. Global price updates help. SIAM J. Discr. Math. 10, 4, 551--572.
[23]
Y. Han. 2002. Deterministic sorting in time and linear space. In Proceedings of the 34th ACM Symposium on Theory of Computers (STOC’02). ACM Press, 602--608.
[24]
Y. Han and M. Thorup. 2002. Integer sorting in O(n√log log n) expected time and linear space. In Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS’02). 135--144.
[25]
C.-C. Huang and T. Kavitha. 2012. Efficient algorithms for maximum weight matchings in general graphs with small edge weights. In Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12). 1400--1412.
[26]
M.-Y. Kao, T. W. Lam, W.-K. Sung, and H.-F. Ting. 2001. A decomposition theorem for maximum weight bipartite matchings. SIAM J. Comput. 31, 1, 18--26.
[27]
A. V. Karzanov. 1976. Efficient implementations of Edmonds’ algorithms for finding matchings with maximum cardinality and maximum weight. In Studies in Discrete Optimization, A. A. Fridman (Eds.). Nauka, Moscow, 306--327.
[28]
E. Lawler. 1976. Combinatorial Optimization: Networks and Matroids. Holt, Rinehart 8 Winston, New York.
[29]
S. Micali and V. Vazirani. 1980. An O(√|V| ċ |E|) algorithm for finding maximum matching in general graphs. In Proceedings of the 21st IEEE Symposium on Foundations of Computer Science (FOCS’80). 17--27.
[30]
J. B. Orlin and R. K. Ahuja. 1992. New scaling algorithms for the assignment and minimum mean cycle problems. Math. Program. 54, 41--56.
[31]
S. Pettie. 2012. A simple reduction from maximum weight matching to maximum cardinality matching. Inf. Process. Lett. 112, 23, 893--898.
[32]
S. Pettie. 2015. Sensitivity analysis of minimum spanning trees in sub-inverse-Ackermann time. J. Graph Algor. Appl. 19, 1, 375--391.
[33]
M. Thorup. 1999. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46, 3, 362--394.
[34]
M. Thorup. 2003. Integer priority queues with decrease key in constant time and the single source shortest paths problem. In Proceedings of the 35th ACM Symposium on Theory of Computing (STOC’03). 149--158.
[35]
M. Thorup. 2007. Equivalence between priority queues and sorting. J. ACM 54, 6.
[36]
V. V. Vazirani. 2012. An improved definition of blossoms and a simpler proof of the MV matching algorithm. CoRR, abs/1210.4594.
[37]
V. V. Vazirani. 2014. A proof of the MV matching algorithm. Unpublished manuscript.
[38]
J. von Neumann. 1953. A certain zero-sum two-person game equivalent to the optimal assignment problem. In Contributions to the Theory of Games, vol. II, H. W. Kuhn and A. W. Tucker (Eds.). Princeton University Press, 5--12.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Algorithms
ACM Transactions on Algorithms  Volume 14, Issue 1
January 2018
269 pages
ISSN:1549-6325
EISSN:1549-6333
DOI:10.1145/3171590
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 January 2018
Accepted: 01 October 2017
Revised: 01 October 2017
Received: 01 February 2017
Published in TALG Volume 14, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Matching polytope
  2. non-bipartite graphs
  3. scaling algorithm

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)137
  • Downloads (Last 6 weeks)18
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Popularity on the roommate diversity problemTheoretical Computer Science10.1016/j.tcs.2024.1149031023(114903)Online publication date: Jan-2025
  • (2024)Maximum Cardinality f-Matching in Time O(n2/3m)ACM Transactions on Algorithms10.1145/369666821:1(1-28)Online publication date: 23-Sep-2024
  • (2024)Traversing Combinatorial 0/1-Polytopes via OptimizationSIAM Journal on Computing10.1137/23M161201953:5(1257-1292)Online publication date: 9-Sep-2024
  • (2024)Recognizing when a preference system is close to admitting a master listTheoretical Computer Science10.1016/j.tcs.2024.114445994(114445)Online publication date: May-2024
  • (2024)Adapting Stable Matchings to Forced and Forbidden PairsJournal of Computer and System Sciences10.1016/j.jcss.2024.103579(103579)Online publication date: Aug-2024
  • (2024)Graphical Approach to Interpreting and Efficiently Evaluating Geminal WavefunctionsInternational Journal of Quantum Chemistry10.1002/qua.70000125:1Online publication date: 20-Dec-2024
  • (2023)Traversing combinatorial 0/1-polytopes via optimization2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00076(1282-1291)Online publication date: 6-Nov-2023
  • (2023)A Deterministic Almost-Linear Time Algorithm for Minimum-Cost Flow2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00037(503-514)Online publication date: 6-Nov-2023
  • (2023)Constrained read-once refutations in UTVPI constraint systems: A parallel perspectiveMathematical Structures in Computer Science10.1017/S0960129523000300(1-17)Online publication date: 11-Sep-2023
  • (2023)A Weight-Scaling Algorithm for f-Factors of MultigraphsAlgorithmica10.1007/s00453-023-01127-x85:10(3214-3289)Online publication date: 18-May-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media