Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A compressive light field projection system

Published: 27 July 2014 Publication History
  • Get Citation Alerts
  • Abstract

    For about a century, researchers and experimentalists have strived to bring glasses-free 3D experiences to the big screen. Much progress has been made and light field projection systems are now commercially available. Unfortunately, available display systems usually employ dozens of devices making such setups costly, energy inefficient, and bulky. We present a compressive approach to light field synthesis with projection devices. For this purpose, we propose a novel, passive screen design that is inspired by angle-expanding Keplerian telescopes. Combined with high-speed light field projection and nonnegative light field factorization, we demonstrate that compressive light field projection is possible with a single device. We build a prototype light field projector and angle-expanding screen from scratch, evaluate the system in simulation, present a variety of results, and demonstrate that the projector can alternatively achieve super-resolved and high dynamic range 2D image display when used with a conventional screen.

    Supplementary Material

    ZIP File (a58-hirsch.zip)
    Supplemental material.

    References

    [1]
    Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A Stereo Display Prototype with Multiple Focal Distances. ACM Trans. Graph. (SIGGRAPH) 23, 804--813.
    [2]
    Balogh, T. 2006. The HoloVizio System. In Proc. SPIE 6055, vol. 60550U.
    [3]
    Berthouzoz, F., and Fattal, R. 2012. Resolution Enhancement by Vibrating Displays. ACM Trans. Graph. 31, 2, 15:1--14.
    [4]
    Bogaert, L., Meuret, Y., Roelandt, S., Avci, A., Smet, H. D., and Thienpont, H. 2010. Single Projector Multiview Displays: Directional Illumination Compared to Beam Steering. In Proc. SPIE 7524, vol. 75241R.
    [5]
    Cichocki, A., Zdunek, R., Phan, A. H., and ichi Amari, S. 2009. Nonnegative Matrix and Tensor Factorizations. Wiley.
    [6]
    Cossairt, O., and Favalora, G., 2006. Minimized-Thickness Angular Scanner of Electromagnetic Radiation, Apr. 26. US Patent App. 11/380,296.
    [7]
    Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-Capable Multiview Volumetric Three-Dimensional Display. Applied Optics 46, 8, 1244--1250.
    [8]
    Damera-Venkata, N., and Chang, N. L. 2009. Display Supersampling. ACM Trans. Graph. 28, 1, 9:1--9:19.
    [9]
    Dodgson, N. A., Moore, J. R., Lang, S. R., Martin, G., and Canepa, P. 2000. A time-sequential multi-projector autostereoscopic display. Journal of the SID 8, 2, 169--176.
    [10]
    Eichenlaub, J. B. 2005. Optical System Which Projects Small Volumetric Images to Very Large Size. In Electronic Imaging 2005, International Society for Optics and Photonics, 313--322.
    [11]
    Funk, W. 2012. History of Autostereoscopic Cinema. In Proc. SPIE 8288, vol. 82880R.
    [12]
    Gabor, D., 1944. Optical System Composed of Lenticules, June 13. US Patent 2,351,034.
    [13]
    Grosse, M., Wetzstein, G., Grundhöfer, A., and Bimber, O. 2010. Coded Aperture Projection. ACM Trans. Graph. 29, 22:1--22:12.
    [14]
    Hecht, E. 2002. Optics, fourth edition. Addison Wesley.
    [15]
    Heide, F., Wetzstein, G., Raskar, R., and Heidrich, W. 2013. Adaptive Image Synthesis for Compressive Displays. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4, 132:1--132:12.
    [16]
    Heide, F., Gregson, J., Wetzstein, G., Raskar, R., and Heidrich, W. 2014. A Compressive Multi-Mode Superresolution Display. ArXiv e-prints (Apr.).
    [17]
    Hembd-Sölner, C., Stevens, R. F., and Hutley, M. C. 1999. Imaging Properties of the Gabor Superlens. Journal of Optics A: Pure and Applied Optics 1, 1, 94.
    [18]
    Hong, J., Kim, Y., Park, S.-G., Hong, J.-H., Min, S.-W., Lee, S.-D., and Lee, B. 2010. 3D/2D Convertible Projection-type Integral Imaging using Concave Half Mirror Array. Optics Express 18.
    [19]
    Hsu, F.-H., 2008. Three-Dimensional (3D) Image Projection. US patent 7425070 B2.
    [20]
    Ives, H., 1903. Parallax Stereogram and Process of Making Same. US patent 725,567.
    [21]
    Ives, H. 1928. Camera for Making Parallax Panoramagrams. J. Opt. Soc. Amer. 17, 435--439.
    [22]
    Jacobs, A., Mather, J., Winlow, R., Montgomery, D., Jones, G., Willis, M., Tillin, M., Hill, L., Khazova, M., Stevenson, H., and Bourhill, G. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 15--18.
    [23]
    Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an Interactive 360° Light Field Display. ACM Trans. Graph. (SIGGRAPH) 26, 40:1--40:10.
    [24]
    Jones, A., Liu, J., Busch, J., Debevec, P., Bolas, M., and Yu, X., 2013. An Autostereoscopic Projector Array Optimized for 3D Facial Display. SIGGRAPH Emerging Technologies.
    [25]
    Jurik, J., Jones, A., Bolas, M., and Debevec, P. 2011. Prototyping a Light Field Display Involving Direct Observation of a Video Projector Array. In Proc. ProCams, IEEE.
    [26]
    Kim, Y., Hong, K., Yeom, J., Hong, J., Jung, J.-H., Lee, Y. W., Park, J.-H., and Lee, B. 2012. A Frontal Projection-type Three-dimensional Display. Optics Express 20.
    [27]
    Kimura, H., Uchiyama, T., and Yoshikawa, H. 2006. Laser Produced 3D Display in the Air. In SIGGRAPH Emerging Technologies, ACM, 20.
    [28]
    Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-Adaptive Parallax Barriers: Optimizing Dual-Layer 3D Displays using Low-Rank Light Field Factorization. ACM Trans. Graph. (SIGGRAPH Asia) 28, 5, 1--10.
    [29]
    Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization Fields: Dynamic Light Field Display Using Multi-Layer LCDs. ACM Trans. Graph. (SIGGRAPH Asia) 30, 6, 186.
    [30]
    Lee, D. D., and Seung, S. 1999. Learning the Parts of Objects by Non-negative Matrix Factorization. Nature 401, 788--791.
    [31]
    Lippmann, G. 1908. La Photographie Intégrale. Academie des Sciences 146, 446--451.
    [32]
    Maimone, A., Wetzstein, G., Lanman, D., Hirsch, M., Raskar, R., and Fuchs, H. 2013. Focus 3D: Compressive Accommodation Display. ACM Trans. Graph. (TOG) 32, 5, 153:1--153:13.
    [33]
    Masia, B., Wetzstein, G., Didyk, P., and Gutierrez, D. 2013. A survey on computational displays: Pushing the boundaries of optics, computation, and perception. Computers & Graphics 37, 8, 1012--1038.
    [34]
    Matusik, W., and Pfister, H. 2004. 3D TV: a Scalable System for Real-time Acquisition, Transmission, and Autostereoscopic Display of Dynamic Scenes. ACM Trans. on Graph. (SIGGRAPH) 23, 814--824.
    [35]
    Meuret, Y., Bogaert, L., Roelandt, S., Vanderheijden, J., Avci, A., Smet, H. D., and Thienpont, H. 2010. LED Projection Architectures for Stereoscopic and Multiview 3D Displays. In Proc. SPIE 7690, vol. 769007.
    [36]
    Nims, J., and Lo, A., 1972. 3-D Screen and System. US patent 3,814,513.
    [37]
    Perlin, K., Paxia, S., and Kollin, J. S. 2000. An Autostereoscopic Display. In ACM SIGGRAPH, ACM, 319--326.
    [38]
    Sajadi, B., Gopi, M., and Majumder, A. 2012. Edge-Guided Resolution Enhancement in Projectors via Optical Pixel Sharing. ACM Trans. Graph. 31, 4, 79.
    [39]
    Sajadi, B., Lai, D.-Q., Iher, A., Gopi, M., and Majumder, A. 2013. Image Enhancement in Projectors Via Optical Pixel Shift and Overlay. In Proc. IEEE ICCP, 1--8.
    [40]
    Sandin, D. J., Margolis, T., Ge, J., Girado, J., Peterka, T., and DeFanti, T. A. 2005. The Varrier Autostereoscopic Virtual Reality Display. ACM Trans. Graph. (SIGGRAPH) 24, 3, 894--903.
    [41]
    Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High Dynamic Range Display Systems. ACM Trans. Graph. (SIGGRAPH) 23, 3, 760--768.
    [42]
    Smoot, L. S., Smithwick, Q., and Reetz, D. 2011. A Volumetric Display Based On A Rim-Driven Varifocal Beamsplitter And LED Backlit LCD. In SIGGRAPH Emerging Technologies, ACM, 22.
    [43]
    Sullivan, A. 2003. A Solid-State Multi-Planar Volumetric Display. In SID Digest, vol. 32, 207--211.
    [44]
    Tompkin, J., Heinzle, S., Kautz, J., and Matusik, W. 2013. Content-Adaptive Lenticular Prints. ACM Trans. Grap. (TOG) 32, 4, 133.
    [45]
    Travis, A. R. L. 1990. Autostereoscopic 3-D Display. OSA Appl. Opt. 29, 29, 4341--4342.
    [46]
    Urey, H., Chellappan, K. V., Erden, E., and Surman, P. 2011. State of the Art in Stereoscopic and Autostereoscopic Displays. Proc. IEEE 99, 4, 540--555.
    [47]
    Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: Tomographic Image Synthesis for Attenuation-based Light Field and High Dynamic Range Displays. ACM Trans. Graph. (SIGGRAPH).
    [48]
    Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor Displays: Compressive Light Field Synthesis using Multilayer Displays with Directional Backlighting. ACM Trans. Graph. (SIGGRAPH) 31, 1--11.
    [49]
    Yang, R., Huang, X., Li, S., and Jaynes, C. 2008. Toward the Light Field Display: Autostereoscopic Rendering via a Cluster of Projectors. IEEE TVCG 14, 1, 84--96.

    Cited By

    View all
    • (2024)Mapping-based design method for high-quality integral projection systemOptics Express10.1364/OE.52076632:10(18379)Online publication date: 3-May-2024
    • (2023)Middle output regularized end-to-end optimization for computational imagingOptica10.1364/OPTICA.49492410:11(1421)Online publication date: 31-Oct-2023
    • (2023)Time-Division Multiplexing Light Field Display With Learned Coded ApertureIEEE Transactions on Image Processing10.1109/TIP.2022.320321032(350-363)Online publication date: 2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 33, Issue 4
    July 2014
    1366 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2601097
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 July 2014
    Published in TOG Volume 33, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. compressive displays
    2. light fields

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)37
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 26 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Mapping-based design method for high-quality integral projection systemOptics Express10.1364/OE.52076632:10(18379)Online publication date: 3-May-2024
    • (2023)Middle output regularized end-to-end optimization for computational imagingOptica10.1364/OPTICA.49492410:11(1421)Online publication date: 31-Oct-2023
    • (2023)Time-Division Multiplexing Light Field Display With Learned Coded ApertureIEEE Transactions on Image Processing10.1109/TIP.2022.320321032(350-363)Online publication date: 2023
    • (2023)Performance evaluation of dual-layer architectures for high dynamic range head mounted displaysJournal of Information Display10.1080/15980316.2022.215486124:1(31-46)Online publication date: 7-Jan-2023
    • (2023)IntroductionAutonomous Vehicles and Virtual Reality10.1007/978-3-031-45263-5_1(1-32)Online publication date: 29-Oct-2023
    • (2022)A Hierarchical Approach for Lossy Light Field Compression With Multiple Bit Rates Based on Tucker Decomposition via Random SketchingIEEE Access10.1109/ACCESS.2022.317760110(56677-56690)Online publication date: 2022
    • (2022)Theory and Implementation of Integral IlluminationIEEE Access10.1109/ACCESS.2021.313910810(939-950)Online publication date: 2022
    • (2022)Full-parallax three-dimensional display based on light field reproductionOptical Review10.1007/s10043-022-00752-129:4(366-374)Online publication date: 2-Jul-2022
    • (2021)A Flexible Coding Scheme Based on Block Krylov Subspace Approximation for Light Field Displays with Stacked Multiplicative LayersSensors10.3390/s2113457421:13(4574)Online publication date: 4-Jul-2021
    • (2021)Ultrahigh-definition volumetric light field projectionOptics Letters10.1364/OL.43115646:17(4212)Online publication date: 24-Aug-2021
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media