Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An asymptotic numerical method for inverse elastic shape design

Published: 27 July 2014 Publication History
  • Get Citation Alerts
  • Abstract

    Inverse shape design for elastic objects greatly eases the design efforts by letting users focus on desired target shapes without thinking about elastic deformations. Solving this problem using classic iterative methods (e.g., Newton-Raphson methods), however, often suffers from slow convergence toward a desired solution. In this paper, we propose an asymptotic numerical method that exploits the underlying mathematical structure of specific nonlinear material models, and thus runs orders of magnitude faster than traditional Newton-type methods. We apply this method to compute rest shapes for elastic fabrication, where the rest shape of an elastic object is computed such that after physical fabrication the real object deforms into a desired shape. We illustrate the performance and robustness of our method through a series of elastic fabrication experiments.

    Supplementary Material

    ZIP File (a95-chen.zip)
    Supplemental material.
    MP4 File (a95-sidebyside.mp4)

    References

    [1]
    Allgower, E. L., and Georg, K. 1990. Numerical continuation methods, vol. 13. Springer-Verlag Berlin.
    [2]
    Bächer, M., Bickel, B., James, D. L., and Pfister, H. 2012. Fabricating articulated characters from skinned meshes. ACM Trans. Graph. 31, 4, 47.
    [3]
    Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. ACM Trans. Graph. 28, 3, 53.
    [4]
    Barbič, J., Sin, F. S., and Schroeder, D., 2012. Vega FEM Library. http://www.jernejbarbic.com/vega.
    [5]
    Barbič, J., Sin, F., and Grinspun, E. 2012. Interactive Editing of Deformable Simulations. ACM Trans. Graph. 31, 4, 70.
    [6]
    Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. ACM Trans. Graph. 29, 4, 63.
    [7]
    Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. ACM Trans. Graph. 31, 4, 118.
    [8]
    Bonet, J., and Wood, R. D. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University.
    [9]
    Brent, R. P. 2013. Algorithms for minimization without derivatives. Courier Dover Publications.
    [10]
    Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., and Weyrich, T. 2012. 3d-printing of non-assembly, articulated models. ACM Trans. Graph. 31, 6, 130.
    [11]
    Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. ACM Trans. Graph. 32, 6, 186.
    [12]
    Chen, D., Levin, D. I. W., Didyk, P., Sitthi-Amorn, P., and Matusik, W. 2013. Spec2fab: A reducer-tuner model for translating specifications to 3d prints. ACM Trans. Graph. 32, 4.
    [13]
    Cochelin, B. 1994. A path-following technique via an asymptotic-numerical method. Computers & structures 53, 5, 1181--1192.
    [14]
    Coros, S., Martin, S., Thomaszewski, B., Schumacher, C., Sumner, R., and Gross, M. 2012. Deformable objects alive! ACM Trans. Graph. 31, 4, 69.
    [15]
    Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. ACM Trans. Graph. 32, 4, 83.
    [16]
    Damil, N., and Potier-Ferry, M. 1990. A new method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures. International Journal of Engineering Science 28, 9, 943--957.
    [17]
    Derouet-Jourdan, A., Bertails-Descoubes, F., and Thollot, J. 2010. Stable inverse dynamic curves. ACM Trans. Graph. 29, 6, 137.
    [18]
    Derouet-Jourdan, A., Bertails-Descoubes, F., Daviet, G., and Thollot, J. 2013. Inverse dynamic hair modeling with frictional contact. ACM Trans. Graph. 32, 6, 159.
    [19]
    Hadap, S. 2006. Oriented strands: dynamics of stiff multi-body system. In Proceedings of SCA, 91--100.
    [20]
    Hildebrandt, K., Schulz, C., von Tycowicz, C., and Polthier, K. 2012. Interactive spacetime control of deformable objects. ACM Trans. Graph. 31, 4, 71.
    [21]
    Lazarus, A., Miller, J., and Reis, P. 2013. Continuation of equilibria and stability of slender elastic rods using an asymptotic numerical method. J. Mech. Phys. Solids 61, 8, 1712--1736.
    [22]
    Levenberg, K. 1944. A method for the solution of certain nonlinear problems in least squares. Quart. J. Appl. Maths. II, 2.
    [23]
    Lourakis, M. I. A., Jul. 2004. levmar: Levenberg-marquardt nonlinear least squares algorithms in C/C++. {web page} http://www.ics.forth.gr/~lourakis/levmar.
    [24]
    Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4, 72.
    [25]
    Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Computer Graphics Forum 31, 2, 519--528.
    [26]
    Nealen, A., Müller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4, 809--836.
    [27]
    Ogden, R. W. 1997. Non-linear elastic deformations. Courier Dover Publications.
    [28]
    Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make it stand: balancing shapes for 3d fabrication. ACM Trans. Graph. 32, 4, 81.
    [29]
    Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. Computer Graphics Forum 31, 2, 835--844.
    [30]
    Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. ACM Trans. Graph. 32, 4, 82.
    [31]
    Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: Improving structural strength of 3d printable objects. ACM Trans. Graph. 31, 4, 48.
    [32]
    SunPe, P. Professional Rapid Prototyping & Manufacturing. http://www.sunpe.com/types-34.html, SunPe PROTOTYPE.
    [33]
    Twigg, C. D., and Kačić-Alesić, Z. 2011. Optimization for sag-free simulations. In Proceedings of SCA, 225--236.
    [34]
    Umetani, N., Kaufman, D. M., Igarashi, T., and Grinspun, E. 2011. Sensitive couture for interactive garment modeling and editing. ACM Trans. Graph. 30, 4, 90.
    [35]
    Zahrouni, H., Cochelin, B., and Potier-Ferry, M. 1999. Computing finite rotations of shells by an asymptotic-numerical method. Comput. Methods Appl. Mech. Eng. 175, 1, 71--85.

    Cited By

    View all
    • (2024)Asymptotic numerical method for hyperelasticity and elastoplasticity: a reviewProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences10.1098/rspa.2023.0714480:2285Online publication date: 6-Mar-2024
    • (2024)Optimal surface clothing with elastic netsJournal of the Mechanics and Physics of Solids10.1016/j.jmps.2024.105684188(105684)Online publication date: Jul-2024
    • (2024)Computational design of custom-fit PAP masksComputers & Graphics10.1016/j.cag.2024.103998122(103998)Online publication date: Aug-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 33, Issue 4
    July 2014
    1366 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2601097
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 July 2014
    Published in TOG Volume 33, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3D printing
    2. elastic fabrication
    3. finite element methods
    4. nonlinear optimization

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)45
    • Downloads (Last 6 weeks)4

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Asymptotic numerical method for hyperelasticity and elastoplasticity: a reviewProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences10.1098/rspa.2023.0714480:2285Online publication date: 6-Mar-2024
    • (2024)Optimal surface clothing with elastic netsJournal of the Mechanics and Physics of Solids10.1016/j.jmps.2024.105684188(105684)Online publication date: Jul-2024
    • (2024)Computational design of custom-fit PAP masksComputers & Graphics10.1016/j.cag.2024.103998122(103998)Online publication date: Aug-2024
    • (2023)Computational Design of Flexible Planar MicrostructuresACM Transactions on Graphics10.1145/361839642:6(1-16)Online publication date: 5-Dec-2023
    • (2023)The Design Space of Kirchhoff RodsACM Transactions on Graphics10.1145/360603342:5(1-20)Online publication date: 20-Sep-2023
    • (2023)Sag-Free Initialization for Strand-Based Hybrid Hair SimulationACM Transactions on Graphics10.1145/359214342:4(1-14)Online publication date: 26-Jul-2023
    • (2022)A general two-stage initialization for sag-free deformable simulationsACM Transactions on Graphics10.1145/3528223.353016541:4(1-13)Online publication date: 22-Jul-2022
    • (2022)Fast evaluation of smooth distance constraints on co-dimensional geometryACM Transactions on Graphics10.1145/3528223.353009341:4(1-17)Online publication date: 22-Jul-2022
    • (2022)Umbrella meshesACM Transactions on Graphics10.1145/3528223.353008941:4(1-15)Online publication date: 22-Jul-2022
    • (2022)Penetration-free projective dynamics on the GPUACM Transactions on Graphics10.1145/3528223.353006941:4(1-16)Online publication date: 22-Jul-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media