Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2608628.2608638acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article

Parallel telescoping and parameterized Picard-Vessiot theory

Published: 23 July 2014 Publication History

Abstract

Parallel telescoping is a natural generalization of differential creative-telescoping for single integrals to line integrals. It computes a linear ordinary differential operator L, called a parallel telescoper, for several multivariate functions, such that the application of L to the functions yields partial derivatives of a single function. We present a necessary and sufficient condition guaranteeing the existence of parallel telescopers for differentially finite functions, and develop an algorithm to compute minimal ones for compatible hyperexponential functions. Besides computing annihilators of parametric line integrals, we use the parallel telescoping for determining Galois groups of parameterized partial differential systems of first order.

References

[1]
G. Almkvist and D. Zeilberger. The method of differentiating under the integral sign. J. Symbolic Comput., 10:571--591, 1990.
[2]
C. Arreche. Computing the differential Galois group of a one-parameter family of second order linear differential equations. Preprint, 2012. arXiv:1208.2226.
[3]
J.-E. Björk. Rings of differential operators. North-Holland Mathematical Library, vol. 21, North-Holland Pub. Co., Amsterdam-New York, 1979.
[4]
A. Bostan, S. Chen, F. Chyzak, and Z. Li. Complexity of creative telescoping for bivariate rational functions. In Proc. ISSAC '10, pages 203--210, ACM, 2010.
[5]
A. Bostan, S. Chen, F. Chyzak, Z. Li, and G. Xin. Hermite reduction and creative telescoping for hyperexponential functions. In Proc. ISSAC '13, pages 77--84, ACM, 2013.
[6]
M. Bronstein. Linear ordinary differential equations: breaking through the order 2 barrier. In Proc. ISSAC '92, pages 42--48, ACM, 1992.
[7]
M. Bronstein. Symbolic Integration I: Transcendental Functions, vol. 1 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2nd ed., 2005.
[8]
P. J. Cassidy. Differential algebraic groups. Amer. J. Math, 94:891--954, 1972.
[9]
P. J. Cassidy and M. F. Singer. Galois theory of parameterized differential equations and linear differential algebraic groups. In Differential equations and quantum groups, vol. 9 of IRMA Lect. Math. Theor. Phys., 113--155. Eur. Math. Soc., Zürich, 2007.
[10]
T. Dreyfus. Computing the Galois group of some parameterized linear differential equation of order two. to appear in Proc. AMS, arXiv:1110.1053, 2011.
[11]
T. Dreyfus. A density theorem for parameterized differential Galois theory. To appear in Pacific Journal of Mathematics, 2012. arXiv:1203.2904.
[12]
H. Gillet, S. Gorchinskiy, and A. Ovchinnikov. Parameterized Picard-Vessiot extensions and Atiyah extensions. Adv. Math., 238:322--411, 2013.
[13]
S. Gorchinskiy and A. Ovchinnikov. Isomonodromic differential equations and differential categories. To appear in J. Math. Pures Appl., arXiv:1202.0927, 2013.
[14]
E. Hrushovski. Computing the Galois group of a linear differential equation. In Differential Galois theory (Będlewo, 2001), volume 58 of Banach Center Publ., pages 97--138. Polish Acad. Sci., Warsaw, 2002.
[15]
N. M. Katz and T. Oda. On the differentiation of de Rham cohomology classes with respect to parameters. J. Math. Kyoto Univ., 8:199--213, 1968.
[16]
E. R. Kolchin. Differential algebraic groups, vol. 114 of Pure and Applied Math. AP Inc., Orlando, FL, 1985.
[17]
C. Koutschan. Creative telescoping for holonomic functions. In Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, Texts & Monographs in Symbolic Computation, pages 171--194. Springer, Wien, 2013.
[18]
P. Landesman. Generalized differential Galois theory. Trans. Amer. Math. Soc., 360(8):4441--4495, 2008.
[19]
Z. Li, M. Wu, and D. Zheng. Testing linear dependence of hyperexponential elements. ACM Commun. Comput. Algebra, 41(1-2):3--11, 2007.
[20]
L. M. Lipshitz. The diagonal of a D-finite power series is D-finite. J. Algebra, 113(2):373--378, 1988.
[21]
L. M. Lipshitz. D-finite power series. J. Algebra, 122(2):353--373, 1989.
[22]
J. I Manin. Algebraic curves over fields with differentiation. Izv. Akad. Nauk SSSR. Ser. Mat., 22:737--756, 1958.
[23]
J. I. Manin. Rational points on algebraic curves over function fields. Izv. Akad. Nauk SSSR Ser. Mat., 27:1395--1440, 1963.
[24]
A. Minchenko, A. Ovchinnikov, and M. F. Singer. Reductive linear differential algebraic groups and the Galois groups of parameterized linear differential equations. to appear in International Mathematics Research Notices, 2013. arXiv:1304.2693.
[25]
A. Minchenko, A. Ovchinnikov, and M. F. Singer. Unipotent differential algebraic groups as parameterized differential Galois groups. To appear in J. Inst. of Math. Jussieu, 2013. arXiv:1301.0092.
[26]
C. Mitschi and M. F. Singer. Monodromy groups of parameterized linear differential equations with regular singularities. Bull. Lond. Math. Soc., 44(5):913--930, 2012.
[27]
M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A. K. Peters Ltd., Wellesley, MA, 1996.
[28]
É. Picard. Sur les intégrales doubles de fonctions rationnelles dont tous les résidus sont nuls. Bul. Sci. Math., 26(sér. 2):143--152, 1902.
[29]
M. F. Singer. Linear algebraic groups as parameterized Picard-Vessiot Galois groups. J. Algebra, 373:153--161, 2013.
[30]
W. Y. Sit. Differential algebraic subgroups of SL(2) and strong normality in simple extensions. Amer. J. Math., 97(3):627--698, 1975.
[31]
R. P. Stanley. Differentiably finite power series. European J. Combin., 1(2):175--188, 1980.
[32]
M. van der Put and M. F. Singer. Galois Theory of Linear Differential Equations, volume 328 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2003.
[33]
M. Wibmer. Existence of Δ-parameterized Picard--Vessiot extensions over fields with algebraically closed constants. J. Algebra, 361:163--171, 2012.
[34]
H. S. Wilf and D. Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and "q") multisum/integral identities. Invent. Math., 108(3):575--633, 1992.
[35]
D. Zeilberger. A holonomic systems approach to special functions identities. J. Comput. Appl. Math., 32:321--368, 1990.
[36]
D. Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11(3):195--204, 1991.

Cited By

View all
  • (2024)Telescopers for differential forms with one parameterSelecta Mathematica10.1007/s00029-024-00926-630:3Online publication date: 9-Mar-2024
  • (2021)Separability Problems in Creative TelescopingProceedings of the 2021 International Symposium on Symbolic and Algebraic Computation10.1145/3452143.3465514(83-90)Online publication date: 18-Jul-2021
  • (2020)On the existence of telescopers for rational functions in three variablesJournal of Symbolic Computation10.1016/j.jsc.2020.08.006Online publication date: Aug-2020
  • Show More Cited By

Index Terms

  1. Parallel telescoping and parameterized Picard-Vessiot theory

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    ISSAC '14: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation
    July 2014
    444 pages
    ISBN:9781450325011
    DOI:10.1145/2608628
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 23 July 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. D-finite functions
    2. creative telescoping
    3. parallel telescopers
    4. parameterized Picard-Vessiot theory

    Qualifiers

    • Research-article

    Conference

    ISSAC '14

    Acceptance Rates

    ISSAC '14 Paper Acceptance Rate 51 of 96 submissions, 53%;
    Overall Acceptance Rate 395 of 838 submissions, 47%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 05 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Telescopers for differential forms with one parameterSelecta Mathematica10.1007/s00029-024-00926-630:3Online publication date: 9-Mar-2024
    • (2021)Separability Problems in Creative TelescopingProceedings of the 2021 International Symposium on Symbolic and Algebraic Computation10.1145/3452143.3465514(83-90)Online publication date: 18-Jul-2021
    • (2020)On the existence of telescopers for rational functions in three variablesJournal of Symbolic Computation10.1016/j.jsc.2020.08.006Online publication date: Aug-2020
    • (2019)Existence Problem of Telescopers for Rational Functions in Three VariablesProceedings of the 2019 International Symposium on Symbolic and Algebraic Computation10.1145/3326229.3326231(82-89)Online publication date: 8-Jul-2019
    • (2016)On the computation of the parameterized differential Galois group for a second-order linear differential equation with differential parametersJournal of Symbolic Computation10.1016/j.jsc.2015.11.00675:C(25-55)Online publication date: 1-Jul-2016

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media