Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2684822.2685320acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
research-article

On Tag Recommendation for Expertise Profiling: A Case Study in the Scientific Domain

Published: 02 February 2015 Publication History

Abstract

Building expertise profiles is a crucial step towards identifying experts in different knowledge areas. However, summarizing the topics of expertise of a given individual is a challenging task, primarily due to the semi-structured and heterogeneous nature of the documentary evidence available for this task. In this paper, we investigate the suitability of tag recommendation as a mechanism to produce effective expertise profiles. In particular, we perform a large-scale user study with academic experts from different knowledge areas to assess the effectiveness of multiple supervised and unsupervised tag recommendation approaches as well as multiple sources of textual evidence. Our analysis reveals that traditional content-based tag recommenders perform well at identifying expertise-oriented tags, with article keywords being a particularly effective source of evidence across profiles in different knowledge areas and with various levels of sparsity. Moreover, by combining multiple recommenders and sources of evidence as learning signals, we further demonstrate the effectiveness of tag recommendation for expertise profiling.

References

[1]
R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. 2 edition, 2011.
[2]
K. Balog and M. de Rijke. Determining Expert Profiles (With an Application to Expert Finding). In Proc. of JCDL, pages 2657--2662, 2007.
[3]
K. Balog, Y. Fang, M. de Rijke, P. Serdyukov, and L. Si. Expertise retrieval. FTIR, 6(2-3):127--256, 2012.
[4]
F. Belém, E. Martins, T. Pontes, J. Almeida, and M. Gonçalves. Associative Tag Recommendation Exploiting Multiple Textual Features. In Proc. of SIGIR, pages 1033--1041, 2011.
[5]
F. Belém, R. Santos, M. Gonçalves, and J. Almeida. Topic Diversity in Tag Recommendation. In Proc. of RecSys, 2013.
[6]
F. M. Belém, E. F. Martins, J. M. Almeida, and M. A. Gonçalves. Personalized and object-centered tag recommendation methods for Web 2.0 applications. Inf. Process. Manage., 50(4):524--553, 2014.
[7]
B. Bi and J. Cho. Automatically Generating Descriptions for Resources by Tag Modeling. In Proc. of CIKM, 2013.
[8]
L. Breiman. Random forests. Machine learning, 45(1):5--32, 2001.
[9]
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hullender. Learning to Rank Using Gradient Descent. In Proc. of the ICML, pages 89--96. ACM, 2005.
[10]
S. Canuto, F. M. Belém, J. M. Almeida, and M. A. Gonçalves. A Comparative Study of Learning-to-Rank Techniques for Tag Recommendation. JIDM, 4(3):453--468, 2013.
[11]
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to Rank: from Pairwise Approach to Listwise Approach. In Proc. of ICML, pages 129--136. ACM, 2007.
[12]
M. de Rijke, K. Balog, T. Bogers, and A. van den Bosch. On the Evaluation of Entity Profiles. In Proc. of CLEF, pages 94--99, 2010.
[13]
M. D. Ekstrand, J. T. Riedl, and J. A. Konstan. Collaborative filtering recommender systems. Found. Trends Hum.-Comput. Interact., 4(2):81--173, 2011.
[14]
Y. Fang and A. Godavarthy. Modeling the Dynamics of Personal Expertise. In Proc. of SIGIR, pages 1107--1110, 2014.
[15]
F. Figueiredo, F. Belém, H. Pinto, J. Almeida, M. Gonçalves, D. Fernandes, E. Moura, and M. Cristo. Evidence of Quality of Textual Features on the Web 2.0. In Proc. of CIKM, pages 909--918, 2009.
[16]
Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. JMLR, 4:933--969, 2003.
[17]
J. H. Friedman. Greedy function approximation: a gradient boosting machine. AOS, pages 1189--1232, 2001.
[18]
N. Garg and I. Weber. Personalized, Interactive Tag Recommendation for Flickr. In Proc. of RecSys, pages 67--74, 2008.
[19]
P. Heymann, D. Ramage, and H. Garcia-Molina. Social Tag Prediction. In Proc. of SIGIR, pages 531--538, 2008.
[20]
J. Lane. Let's make science metrics more scientific. Nature, 464(7288):488--489, 2010.
[21]
Z. Lin, G. Ding, M. Hu, J. Wang, and J. Sun. Automatic Image Annotation Using Tag-Related Random Search Over Visual Neighbors. In Proc. of CIKM, pages 1784--1788, 2012.
[22]
C. D. Manning and H. Schütze. Foundations of Statistical Natural Language Processing. 1999.
[23]
E. F. Martins, F. M. Belém, J. M. Almeida, and M. A. Gonçalves. On cold start for associative tag recoomendation. JASIST (accepted for publication), 2014.
[24]
D. Metzler and W. B. Croft. Linear feature-based models for information retrieval. Information Retrieval, 10(3):257--274, 2007.
[25]
R. Prokofyev, A. Boyarsky, O. Ruchayskiy, K. Aberer, G. Demartini, and P. Cudré-Mauroux. Tag Recommendation for Large-scale Ontology-based Information Systems. In Proc. of ISWC, 2012.
[26]
C. Quoc and V. Le. Learning to rank with nonsmooth cost functions. NIPS, 19:193, 2007.
[27]
J. Rybak, K. Balog, and K. Nørvåg. Temporal Expertise Profiling. In Proc. of ECIR, pages 540--546. 2014.
[28]
P. Serdyukov, M. Taylor, V. Vinay, M. Richardson, and R. W. White. Automatic People Tagging for Expertise Profiling in the Enterprise. In Proc. of ECIR, pages 399--410, 2011.
[29]
S. Siersdorfer, J. S. Pedro, and M. Sanderson. Automatic Video Tagging Using Content Redundancy. In Proc. of SIGIR, pages 395--402, 2009.
[30]
B. Sigurbjörnsson and R. van Zwol. Flickr Tag Recommendation Based on Collective Knowledge. In Proc. of WWW, pages 327--336, 2008.
[31]
B. Sigurbjörnsson and R. van Zwol. Flickr Tag Recommendation Based on Collective Knowledge. In Proc. 17th International Conference on World Wide Web (WWW), pages 327--336, 2008.
[32]
Y. Song, L. Zhang, and C. Giles. Automatic tag recommendation algorithms for social recommender systems. TWEB, 5:1--31, 2011.
[33]
P. Venetis, G. Koutrika, and H. Garcia-Molina. On the Selection of Tags for Tag Clouds. In Proc. of WSDM, pages 835--844, 2011.
[34]
L. Wu, L. Yang, N. Yu, and X.-S. Hua. Learning to Tag. In Proc. of WWW, pages 361--370, 2009.
[35]
Q. Wu, C. J. Burges, K. M. Svore, and J. Gao. Adapting boosting for information retrieval measures. Information Retrieval, 13(3):254--270, 2010.
[36]
J. Xu and H. Li. Adarank: a Boosting Algorithm for Information Retrieval. In Proc. of SIGIR, pages 391--398. ACM, 2007.
[37]
Y. Yang and J. O. Pedersen. A Comparative Study on Feature Selection in Text Categorization. In Proc. of the ICML, pages 412--420, 1997.
[38]
D. Yin, S. Guo, B. Chidlovskii, B. Davison, C. Archambeau, and G. Bouchard. Connecting Comments and Tags: Improved Modeling of Social Tagging Systems. In Proc. of WSDM, pages 547--556, 2013.

Cited By

View all
  • (2020)Tagging and Tag RecommendationCyberspace10.5772/intechopen.82242Online publication date: 17-Jun-2020
  • (2020)Graph‐based tag recommendations using clusters of patients in clinical decision support systemConcurrency and Computation: Practice and Experience10.1002/cpe.562433:1Online publication date: 6-Jan-2020
  • (2019)Expert Finding Systems: A Systematic ReviewApplied Sciences10.3390/app92042509:20(4250)Online publication date: 11-Oct-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSDM '15: Proceedings of the Eighth ACM International Conference on Web Search and Data Mining
February 2015
482 pages
ISBN:9781450333177
DOI:10.1145/2684822
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 February 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. expertise profiling
  2. learning to rank
  3. tag recommendation

Qualifiers

  • Research-article

Funding Sources

Conference

WSDM 2015

Acceptance Rates

WSDM '15 Paper Acceptance Rate 39 of 238 submissions, 16%;
Overall Acceptance Rate 498 of 2,863 submissions, 17%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)6
  • Downloads (Last 6 weeks)1
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2020)Tagging and Tag RecommendationCyberspace10.5772/intechopen.82242Online publication date: 17-Jun-2020
  • (2020)Graph‐based tag recommendations using clusters of patients in clinical decision support systemConcurrency and Computation: Practice and Experience10.1002/cpe.562433:1Online publication date: 6-Jan-2020
  • (2019)Expert Finding Systems: A Systematic ReviewApplied Sciences10.3390/app92042509:20(4250)Online publication date: 11-Oct-2019
  • (2019)Automated Expertise RetrievalACM Computing Surveys10.1145/333100052:5(1-30)Online publication date: 13-Sep-2019
  • (2018)Scientific Users' Interest Detection and Collaborators Recommendation2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService)10.1109/BigDataService.2018.00019(72-79)Online publication date: Mar-2018
  • (2017)Expert suggestion for conference program committees2017 11th International Conference on Research Challenges in Information Science (RCIS)10.1109/RCIS.2017.7956540(221-232)Online publication date: May-2017
  • (2017)On Using Disparate Scholarly Data to Identify Potential Members for Interdisciplinary Research Groups2017 IEEE International Conference on Information Reuse and Integration (IRI)10.1109/IRI.2017.33(59-68)Online publication date: Aug-2017
  • (2017)Automatic Hierarchical Categorization of Research Expertise Using Minimum InformationResearch and Advanced Technology for Digital Libraries10.1007/978-3-319-67008-9_9(103-115)Online publication date: 2-Sep-2017
  • (2017)A survey on tag recommendation methodsJournal of the Association for Information Science and Technology10.1002/asi.2373668:4(830-844)Online publication date: 1-Apr-2017
  • (2016)The LExR Collection for Expertise Retrieval in AcademiaProceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval10.1145/2911451.2914678(721-724)Online publication date: 7-Jul-2016

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media