Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Profile-Based Summarisation for Web Site Navigation

Published: 17 February 2015 Publication History

Abstract

Information systems that utilise contextual information have the potential of helping a user identify relevant information more quickly and more accurately than systems that work the same for all users and contexts. Contextual information comes in a variety of types, often derived from records of past interactions between a user and the information system. It can be individual or group based. We are focusing on the latter, harnessing the search behaviour of cohorts of users, turning it into a domain model that can then be used to assist other users of the same cohort. More specifically, we aim to explore how such a domain model is best utilised for profile-biased summarisation of documents in a navigation scenario in which such summaries can be displayed as hover text as a user moves the mouse over a link. The main motivation is to help a user find relevant documents more quickly. Given the fact that the Web in general has been studied extensively already, we focus our attention on Web sites and similar document collections. Such collections can be notoriously difficult to search or explore. The process of acquiring the domain model is not a research interest here; we simply adopt a biologically inspired method that resembles the idea of ant colony optimisation. This has been shown to work well in a variety of application areas. The model can be built in a continuous learning cycle that exploits search patterns as recorded in typical query log files. Our research explores different summarisation techniques, some of which use the domain model and some that do not. We perform task-based evaluations of these different techniques—thus of the impact of the domain model and profile-biased summarisation—in the context of Web site navigation.

References

[1]
S. Adindla. 2014. Navigating the Knowledge Graph: Automatically Acquiring and Utilizing a Domain Model for Intranet Search. Ph.D. Dissertation. University of Essex, Colchester, United Kingdom.
[2]
S. Adindla and U. Kruschwitz. 2013. Using predicate-argument structure to bootstrap a domain model for site search: Results of a task-based evaluation. In Proceedings of OAIR/RIAO (10th International Conference in the RIAO Series). 29--32.
[3]
M.-D. Albakour. 2012. Adaptive Domain Modelling for Information Retrieval. Ph.D. Dissertation. University of Essex, Colchester, United Kingdom.
[4]
M.-D. Albakour, U. Kruschwitz, N. Nanas, D. Song, M. Fasli, and A. De Roeck. 2011. Exploring ant colony optimisation for adaptive interactive search. In Proceedings of the 3rd International Conference on the Theory of Information Retrieval (ICTIR’11). Springer, 213--224.
[5]
G. Armano, A. Giuliani, and E. Vargiu. 2012. Using snippets in text summarization: A comparative study and an application. In Proceedings of the 3rd Italian Information Retrieval (IIR) Workshop. CEUR Workshop Proceedings, Vol. 835. 121--132.
[6]
R. Baeza-Yates and A. Tiberi. 2007. Extracting semantic relations from query logs. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, 76--85.
[7]
R. Barzilay, K. R. McKeown, and M. Elhadad. 1999. Information fusion in the context of multi-document summarization. In Proceedings of ACL. Association for Computational Linguistics, 550--557.
[8]
S. M. Beitzel, E. C. Jensen, A. Chowdhury, O. Frieder, and D. Grossman. 2007. Temporal analysis of a very large topically categorized web query log. Journal of the American Society for Information Science and Technology (JASIST) 58, 2, 166--178.
[9]
S. M. Beitzel, E. C. Jensen, A. Chowdhury, D. Grossman, and O. Frieder. 2004. Hourly analysis of a very large topically categorized web query log. In Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 321--328.
[10]
P. N. Bennett, R. W. White, W. Chu, S. T. Dumais, P. Bailey, F. Borisyuk, and X. Cui. 2012. Modeling the impact of short- and long-term behavior on search personalization. In Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’12). ACM, New York, NY, 185--194.
[11]
B. Berendt and M. Spiliopoulou. 2000. Analysis of navigation behaviour in web sites integrating multiple information systems. The VLDB Journal 9, 1, 56--75.
[12]
A. L. Berger and V. O. Mittal. 2000. OCELOT: A system for summarizing web pages. In Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’00). ACM, New York, NY, 144--151.
[13]
P. Boldi, F. Bonchi, C. Castillo, D. Donato, and S. Vigna. 2009. Query suggestions using query-flow graphs. In Proceedings of the 2009 Workshop on Web Search Click Data. ACM, New York, NY, 56--63.
[14]
P. Borlund. 2000. Experimental components for the evaluation of interactive information retrieval systems. Journal of Documentation 56, 1, 71--90.
[15]
R. Brandow, K. Mitze, and L. F. Rau. 1995. Automatic condensation of electronic publications by sentence selection. Information Processing and Management 31, 5, 675--685.
[16]
A. Carbonaro. 2010. Improving web search and navigation using summarization process. In Knowledge Management, Information Systems, E-Learning, and Sustainability Research. Springer, New York, NY, 131--138.
[17]
M. Chau, X. Fang, and O. R. L. Sheng. 2005. Analysis of the query logs of a web site search engine. Journal of the American Society for Information Science and Technology (JASIST) 56, 13, 1363--1376.
[18]
H. Chen and S. Dumais. 2000. Bringing order to the web: Automatically categorizing search results. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’00). ACM, New York, NY, 145--152.
[19]
E. H. Chi, P. Pirolli, and J. Pitkow. 2000. The scent of a site: A system for analyzing and predicting information scent, usage, and usability of a web site. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’00). ACM, New York, NY, 161--168.
[20]
M. Clark, Y. Kim, U. Kruschwitz, D. Song, M.-D. Albakour, S. Dignum, U. C. Beresi, M. Fasli, and A. De Roeck. 2012. Automatically structuring domain knowledge from text: An overview of current research. Information Processing and Management 48, 3, 552--568.
[21]
M. Coyle and B. Smyth. 2007. Supporting intelligent Web search. ACM Transactions on Internet Technology (TOIT) 7, 4, 20.
[22]
N. Craswell, D. Hawking, T. Upstill, A. McLean, R. Wilkinson, and M. Wu. 2003. TREC11 Web and interactive tracks at CSIRO. In Proceedings of TREC-12. 193--203.
[23]
H. Daumé III and D. Marcu. 2006. Bayesian query-focused summarization. In Proceedings of COLING/ACL. Association for Computational Linguistics, 305--312.
[24]
H. Deng, I. King, and M. R. Lyu. 2009. Entropy-biased models for query representation on the click graph. In Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 339--346.
[25]
G. Di Caro and M. Dorigo. 1998. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial Intelligence Research 9, 317--365.
[26]
A. Díaz and P. Gervás. 2007. User-model based personalized summarization. Information Processing & Management 43, 6, 1715--1734.
[27]
A. Diriye, A. Blandford, and A. Tombros. 2010. When is system support effective? In Proceedings of IiiX. ACM Press, New York, NY, 55--64.
[28]
M. Dorigo, M. Birattari, and T. Stutzle. 2006. Ant colony optimization. IEEE Intelligent Systems 1, 28--39.
[29]
S. Dumais, E. Cutrell, and H. Chen. 2001. Optimizing search by showing results in context. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’01). ACM Press, New York, NY, 277--284.
[30]
M. Fiszman, D. Demner-Fushman, H. Kilicoglu, and T. C. Rindflesch. 2009. Automatic summarization of MEDLINE citations for evidence-based medical treatment: A topic-oriented evaluation. Journal of Biomedical Informatics 42, 5, 801--813.
[31]
B. M. Fonseca, P. B. Golgher, E. S. De Moura, B. Pôssas, and N. Ziviani. 2003. Discovering search engine related queries using association rules. Journal of Web Engineering 2, 4, 215--227.
[32]
W. B. Frakes. 1992. Stemming Algorithms. In: W. B. Frakes, R. Baeza-Yates (Eds.). Information Retrieval: Data Structures and Algorithms. Prentice-Hall, Upper Saddle River, NJ.
[33]
J. Freyne, R. Farzan, P. Brusilovsky, B. Smyth, and M. Coyle. 2007. Collecting community wisdom: Integrating social search & social navigation. In Proceedings of the 12th International Conference on Intelligent User Interfaces (IUI’’07). ACM, New York, NY, 52--61.
[34]
J. Freyne, B. Smyth, M. Coyle, E. Balfe, and P. Briggs. 2004. Further experiments on collaborative ranking in community-based web search. Artificial Intelligence Review 21, 3--4, 229--252.
[35]
G. W. Furnas. 1997. Effective view navigation. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI’97, 367--374.
[36]
S. Gauch, M. Speretta, A. Chandramouli, and A. Micarelli. 2007. User profiles for personalized information access. The Adaptive Web, 54--89.
[37]
D. Gayo-Avello. 2009. A survey on session detection methods in query logs and a proposal for future evaluation. Information Sciences 179, 12, 1822--1843.
[38]
A. Göker and D. He. 2000. Analysing web search logs to determine session boundaries for user-oriented learning. In Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH’00). Springer, 319--322.
[39]
D. Hawking. 2011. Enterprise search. In Modern Information Retrieval (2nd ed.), R. Baeza-Yates and B. Ribeiro-Neto (Eds.). Addison-Wesley, New York, NY, 641--683.
[40]
D. Hawking and J. Zobel. 2007. Does topic metadata help with web search? JASIST 58, 5, 613--628.
[41]
W. Hersh. 2002. TREC 2002 interactive track report. In Proceedings of TREC.
[42]
W. Hersh and P. Over. 2001. The TREC-9 interactive track report. NIST Special Publication 249, 41--50.
[43]
E. Hovy and C.-Y. Lin. 1998. Automated text summarization and the SUMMARIST system. In Proceedings of a Workshop on Held at Baltimore, Maryland: October 13--15, 1998 (TIPSTER’98). Association for Computational Linguistics, Stroudsburg, PA, 197--214.
[44]
B. J. Jansen, J. Bateman, and T. Saracevic. 1998. Real life information retrieval: A study of user queries on the web. SIGIR Forum 32, 1, 5--17.
[45]
B. J. Jansen, A. Spink, C. Blakely, and S. Koshman. 2007. Defining a session on Web search engines. Journal of the American Society for Information Science and Technology (JASIST) 58, 6, 862--871.
[46]
B. J. Jansen, A. Spink, and I. Taksa (Eds.). 2009. Handbook of Research on Web Log Analysis. IGI Global, Hershey, PA.
[47]
T. Joachims, D. Freitag, and T. Mitchell. 1997. WebWatcher: A tour guide for the World Wide Web. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI). 770--775.
[48]
G. J. F. Jones and Q. Li. 2008. Focused browsing: Providing topical feedback for link selection in hypertext browsing. In Advances in Information Retrieval. Springer, 700--704.
[49]
R. Jones and K. L. Klinkner. 2008. Beyond the session timeout: Automatic hierarchical segmentation of search topics in query logs. In Proceeding of the 17th ACM Conference on Information and Knowledge Management (CIKM’08). 699--708.
[50]
R. Jones, B. Rey, O. Madani, and W. Greiner. 2006. Generating query substitutions. In Proceedings of the 15th International Conference on World Wide Web. ACM Press, New York, NY, 387--396.
[51]
S. Jul and G. W. Furnas. 1997. Navigation in electronic worlds: A CHI 97 workshop. SIGCHI Bull. 29, 4, 44--49.
[52]
D. Jurafsky and J. H. Martin. 2009. Speech And Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. Prentice-Hall, Upper Saddle River, NY.
[53]
J. S. Justeson and S. M. Katz. 1995. Technical terminology: Some linguistic properties and an algorithm for identification in text. Natural Language Engineering 1, 1, 9--27.
[54]
P. B. Kantor, E. Boros, B. Melamed, V. Meñkov, B. Shapira, and D. J. Neu. 2000. Capturing human intelligence in the net. Communications of the ACM 43, 8, 112--115.
[55]
J. Karim, I. Antonellis, V. Ganapathi, and H. Garcia-Molina. 2009. A dynamic navigation guide for webpages. In CHI 2009. Stanford InfoLab, 1--4. Retrieved January 1, 2015 from http://ilpubs.stanford.edu:8090/946/
[56]
D. Kelly. 2009. Methods for evaluating interactive information retrieval systems with users. Foundations and Trends in Information Retrieval 3, 1--224.
[57]
R. Kohavi, R. M. Henne, and D. Sommerfield. 2007. Practical guide to controlled experiments on the web: listen to your customers not to the hippo. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’07). ACM, New York, NY, 959--967.
[58]
R. Kraft and J. Zien. 2004. Mining anchor text for query refinement. In Proceedings of the 13th International Conference on World Wide Web. ACM, New York, NY, 666--674.
[59]
U. Kruschwitz. 2005. Intelligent Document Retrieval: Exploiting Markup Structure. The Information Retrieval Series, Vol. 17. Springer, New York, NY.
[60]
U. Kruschwitz, D. Lungley, M.-D. Albakour, and D. Song. 2013. Deriving query suggestions for site search. Journal of the American Society for Information Science and Technology (JASIST) 64, 10, 1975--1994.
[61]
U. Kruschwitz, M.-D Albakour, J. Niu, J. Leveling, N. Nanas, Y. Kim, D. Song, M. Fasli, and A. De Roeck. 2011. Moving towards Adaptive Search in Digital Libraries. In Advanced Language Technologies for Digital Libraries. Lecture Notes in Computer Science, Vol. 6699. Springer, New York, NY, 41--60.
[62]
B. Kules and R. Capra. 2008. Creating exploratory tasks for a faceted search interface. In Second Workshop on Human-Computer Interaction (HCIR’08).
[63]
W. Li, F. Wei, Q. Lu, and Y. He. 2008. PNR 2: Ranking sentences with positive and negative reinforcement for query-oriented update summarization. In Proceedings of COLING. Association for Computational Linguistics, 489--496.
[64]
C. Lin. 2004. ROUGE: A package for automatic evaluation of summaries. In Proceedings of the Workshop on Text Summarization Branches Out (WAS’04). 25--26.
[65]
C. Y. Lin and E. Hovy. 2002. From single to multi-document summarization: A prototype system and its evaluation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Association for Computational Linguistics, 457--464.
[66]
C. Y. Lin and E. Hovy. 2003. Automatic evaluation of summaries using n-gram co-occurrence statistics. In Proceedings of HLT-NAACL. ACL, 71--78.
[67]
E. Lloret and M. Palomar. 2012. Text summarisation in progress: A literature review. Artificial Intelligence Review 37, 1, 1--41.
[68]
H. Luhn. 1958. The automatic creation of literature abstracts. IBM Journal of Research and Development 2, 2, 159--165.
[69]
I. Mani and M. T. Maybury. 1999. Advances in automatic text summarization. MIT Press, Cambridge, MA.
[70]
G. Marchionini and R. W. White. 2009. Information-seeking support systems. IEEE Computer 42, 3 (2009), 30--32.
[71]
D. Martens, M. De Backer, J. Vanthienen, M. Snoeck, and B. Baesens. 2007. Classification with ant colony optimization. IEEE Transactions on Evolutionary Computation 11, 651--665.
[72]
K. R. McKeown, J. L. Klavans, V. Hatzivassiloglou, R. Barzilay, and E. Eskin. 1999. Towards multidocument summarization by reformulation: Progress and prospects. In Proceedings of AAAI. 453--460.
[73]
M. Melucci. 2012. Contextual search: A computational framework. Foundations and Trends in Information Retrieval 6, 257--405.
[74]
A. Nenkova and K. McKeown. 2011. Automatic summarization. Now Publishers, Delft, The Netherlands.
[75]
A. Nenkova and R. Passonneau. 2004. Evaluating content selection in summarization: The pyramid method. NAACL-HLT.
[76]
C. Olston and E. H. Chi. 2003. ScentTrails: Integrating browsing and searching on the Web. ACM Trans. Comput.-Hum. Interact. 10, 3, 177--197.
[77]
T. Paek, S. Dumais, and R. Logan. 2004. WaveLens: A new view onto internet search results. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’04). ACM, New York, NY, 727--734.
[78]
S. Park. 2008. Personalized summarization agent using non-negative matrix factorization. PRICAI 2008: Trends in Artificial Intelligence, 1034--1038.
[79]
J. Pitkow, H. Schütze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds, E. Adar, and T. Breuel. 2002. Personalized search. Communications of the ACM 45, 9, 50--55.
[80]
D. R. Radev, H. Jing, M. Stys, and D. Tam. 2004. Centroid-based summarization of multiple documents. Information Processing & Management 40, 6, 919--938.
[81]
M. Ringel Morris, J. Teevan, and S. Bush. 2008. Enhancing collaborative web search with personalization: Groupization, smart splitting, and group hit-highlighting. In Proceedings of the 2008 ACM Conference on Computer Supported Cooperative Work (CSCW’08). ACM, New York, NY, 481--484.
[82]
I. Ruthven. 2011. Information retrieval in context. In: M. Melucci and R, Baeza-Yates (Eds.). Advanced Topics in Information Retrieval. Springer, New York, 195--216.
[83]
S. Z. Saad and U. Kruschwitz. 2011. Applying web usage mining for adaptive intranet navigation. In Proceedings of the 2nd Information Retrieval Facility Conference. Lecture Notes in Computer Science, Vol. 6653. Springer, 118--133.
[84]
S. Z. Saad and U. Kruschwitz. 2013. Exploiting click logs for adaptive intranet navigation. In Proceedings of the 35th European Conference on Information Retrieval (ECIR’13). Lecture Notes in Computer Science, Vol. 7814. Springer, 793--796.
[85]
M. Sanderson and B. Croft. 1999. Deriving concept hierarchies from text. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 206--213.
[86]
C. Silva and B. Ribeiro. 2003. The importance of stop word removal on recall values in text categorization. In Proceedings of the International Joint Conference on Neural Networks, Vol. 3. IEEE, 1661--1666.
[87]
C. Silverstein, M. Henzinger, and H. Marais. 1998. Analysis of a Very Large AltaVista Query Log. Digital SRC Technical Note 1998-014.
[88]
F. Silvestri. 2010. Mining Query Logs: Turning Search Usage Data into Knowledge. Foundations and Trends in Information Retrieval, Vol. 4. Now Publishers, Delft, The Netherlands.
[89]
M. D. Smucker. 2011. Information representation. In Interactive Information Seeking, Behaviour and Retrieval, I. Ruthven and D. Kelly (Eds.). Facet Publishing, London, United Kingdom, 77--93.
[90]
B. Smyth. 2007. A community-based approach to personalizing web search. Computer 40, 8, 42--50.
[91]
B. Smyth, E. Balfe, J. Freyne, P. Briggs, M. Coyle, and O. Boydell. 2005. Exploiting query repetition and regularity in an adaptive community-based web search engine. User Modeling and User-Adapted Interaction 14, 5, 383--423.
[92]
B. Smyth, J. Freyne, M. Coyle, P. Briggs, and E. Balfe. 2003. I-SPY—Anonymous, community-based personalization by collaborative meta-search. In Proceedings of the 23rd SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence. Springer, 367--380.
[93]
K. Socha, M. Sampels, and M. Manfrin. 2003. Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. In Applications of Evolutionary Computing. Lecture Notes in Computer Science, Vol. 2611. Springer, Berlin, 334--345.
[94]
G. C. Stein, A. Bagga, and G. B. Wise. 2000. Multi-document summarization: Methodologies and evaluations. In Proceedings of TALN00. 337--346.
[95]
D. Stenmark and T. Jadaan. 2006. Intranet users’ information-seeking behaviour: A longitudinal study of search engine logs. In Proceedings of ASIS&T. Austin, TX.
[96]
N. Stokes, J. Rong, and L. Cavedon. 2007. NICTAs update and question-based summarisation systems at DUC 2007. In Proceedings of the Document Understanding Conference Workshop.
[97]
J. Teevan and S. Dumais. 2011. Web retrieval, ranking and personalization. In: I. Ruthven and D. Kelly (Eds.). Interactive Information Seeking, Behaviour and Retrieval. Facet Publishing, London, United Kingdom, 189--203.
[98]
J. Teevan, S. T. Dumais, and E. Horvitz. 2010. Potential for personalization. ACM Transactions on Computer-Human Interaction 17, 1, 31 pages. http://dx.doi.org/10.1145/1721831.1721835
[99]
J. Teevan, M. Ringel Morris, and S. Bush. 2009. Discovering and using groups to improve personalized search. In Proceedings of the 2nd ACM International Conference on Web Search and Data Mining (WSDM’09). ACM Press, New York, NY, 15--24.
[100]
X. Wan. 2009. Topic analysis for topic-focused multi-document summarization. In Proceedings of CIKM. ACM, New York, NY, 1609--1612.
[101]
X. Wan. 2010. Towards a unified approach to simultaneous single-document and multi-document summarizations. In Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 1137--1145.
[102]
C. Wang, F. Jing, L. Zhang, and H. J. Zhang. 2007. Learning query-biased web page summarization. In Proceedings of CIKM.
[103]
A. Wexelblat and P. Maes. 1999. Footprints: History-rich tools for information foraging. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’99). ACM, New York, NY, 270--277.
[104]
R. W. White, M. Bilenko, and S. Cucerzan. 2007. Studying the use of popular destinations to enhance web search interaction. In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 159--166.
[105]
R. W. White and J. Huang. 2010. Assessing the scenic route: Measuring the value of search trails in web logs. In Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York, NY, 587--594.
[106]
R. W. White, J. M. Jose, and I. Ruthven. 2003. A task-oriented study on the influencing effects of query-biased summarisation in web searching. Information Processing and Management 39, 5, 707--733.
[107]
R. W. White, I. Ruthven, and J. M. Jose. 2002. Finding relevant documents using top ranking sentences: An evaluation of two alternative schemes. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’02). ACM, New York, NY, 57--64.
[108]
M. Wilson. 2011. Interfaces for information retrieval. In: I Ruthven and D. Kelly (Eds.). Interactive Information Seeking, Behaviour and Retrieval. Facet Publishing, London, United Kingdom, 139--170.
[109]
J. Yan, W. Chu, and R. W. White. 2014. Cohort modeling for enhanced personalized search. In Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR’’14). ACM, New York, NY, 505--514.
[110]
R. Yan, J. Y. Nie, and X. Li. 2011. Summarize what you are interested in: An optimization framework for interactive personalized summarization. In Proceedings of EMNLP. 1342--1351.
[111]
O. Yeloglu, E. Milios, and N. Zincir-Heywood. 2011. Multi-document summarization of scientific corpora. In Proceedings of the 2011 ACM Symposium on Applied Computing. ACM, New York, NY, 252--258.
[112]
X. Yuan and N. J. Belkin. 2010. Investigating information retrieval support techniques for different information-seeking strategies. JASIST 61, 8, 1543--1563.

Cited By

View all
  • (2023)A Personalized Reinforcement Learning Summarization Service for Learning Structure from Unstructured Data2023 IEEE International Conference on Web Services (ICWS)10.1109/ICWS60048.2023.00040(206-213)Online publication date: Jul-2023
  • (2022)On Natural Language User Profiles for Transparent and Scrutable RecommendationProceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3477495.3531873(2863-2874)Online publication date: 6-Jul-2022
  • (2022)The effects of dynamic prompt and background transparency of hover feedback design on the user interface of shopping websitesAsia Pacific Journal of Marketing and Logistics10.1108/APJML-11-2021-082135:4(809-827)Online publication date: 7-Jun-2022
  • Show More Cited By

Index Terms

  1. Profile-Based Summarisation for Web Site Navigation

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Information Systems
    ACM Transactions on Information Systems  Volume 33, Issue 1
    Special Issue on Contextual Search and Recommendation
    March 2015
    148 pages
    ISSN:1046-8188
    EISSN:1558-2868
    DOI:10.1145/2737806
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 February 2015
    Accepted: 01 November 2014
    Revised: 01 September 2014
    Received: 01 March 2014
    Published in TOIS Volume 33, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Term association networks
    2. browsing
    3. group profiling
    4. log analysis
    5. multi-document summarisation (MDS)
    6. navigation
    7. single-document summarisation (SDS)

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)13
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)A Personalized Reinforcement Learning Summarization Service for Learning Structure from Unstructured Data2023 IEEE International Conference on Web Services (ICWS)10.1109/ICWS60048.2023.00040(206-213)Online publication date: Jul-2023
    • (2022)On Natural Language User Profiles for Transparent and Scrutable RecommendationProceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3477495.3531873(2863-2874)Online publication date: 6-Jul-2022
    • (2022)The effects of dynamic prompt and background transparency of hover feedback design on the user interface of shopping websitesAsia Pacific Journal of Marketing and Logistics10.1108/APJML-11-2021-082135:4(809-827)Online publication date: 7-Jun-2022
    • (2019)Long story short: finding health advice with informative summaries on health social mediaAslib Journal of Information Management10.1108/AJIM-02-2019-0048ahead-of-print:ahead-of-printOnline publication date: 30-Aug-2019
    • (2018)Contextualised Browsing in a Digital Library's Living LabProceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries10.1145/3197026.3197054(89-98)Online publication date: 23-May-2018
    • (2018)An Ontology-based Term Weighting Technique for Web Document CategorizationProcedia Computer Science10.1016/j.procs.2018.07.010133(75-81)Online publication date: 2018
    • (2018)Social SearchSocial Information Access10.1007/978-3-319-90092-6_7(213-276)Online publication date: 3-May-2018
    • (2016)Comparative analysis of relevance feedback methods based on two user studiesComputers in Human Behavior10.1016/j.chb.2016.02.06460:C(138-146)Online publication date: 1-Jul-2016
    • (2015)Inferring Users’ Interest on Web Documents Through Their Implicit BehaviourEngineering Applications of Neural Networks10.1007/978-3-319-23983-5_29(315-324)Online publication date: 22-Oct-2015

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media