Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact

Published: 08 May 2015 Publication History

Abstract

We present a solution method that, compared to the traditional Gauss-Seidel approach, reduces the time required to simulate the dynamics of large systems of rigid bodies interacting through frictional contact by one to two orders of magnitude. Unlike Gauss-Seidel, it can be easily parallelized, which allows for the physics-based simulation of systems with millions of bodies. The proposed accelerated projected gradient descent (APGD) method relies on an approach by Nesterov in which a quadratic optimization problem with conic constraints is solved at each simulation time step to recover the normal and friction forces present in the system. The APGD method is validated against experimental data, compared in terms of speed of convergence and solution time with the Gauss-Seidel and Jacobi methods, and demonstrated in conjunction with snow modeling, bulldozer dynamics, and several benchmark tests that highlight the interplay between the friction and cohesion forces.

References

[1]
V. Acary, F. Cadoux, C. Lemarechal, and J. Malick. 2011. A formulation of the linear discrete Coulomb friction problem via convex optimization. ZAMM- J. Appl. Math. Mechan./Zeitschrift fur Angewandte Mathematik und Mechanik 91, 2, 155--175.
[2]
M. A. Ambroso, C. R. Santore, A. R. Abate, and D. J. Durian. 2005. Penetration depth for shallow impact cratering. Phys. Rev. E71, 051305.
[3]
E. Andersen and K. Andersen. 2000. The mosek interior point optimizer for linear programming: An implementation of the homogeneous algorithm. In High Performance Optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang, Eds., Springer, 197--232.
[4]
E. Andersen, C. Roos, and T. Terlaky. 2003. On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95, 2, 249--277.
[5]
M. Anitescu. 2006. Optimization-based simulation of nonsmooth rigid multibody dynamics. Math. Program. 105, 1, 113--143.
[6]
M. Anitescu, J. F. Cremer, and F. A. Potra. 1996. Formulating 3D contact dynamics problems. Mechan. Struct. Mach. 24, 4, 405--437.
[7]
M. Anitescu and G. D. Hart. 2004. A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Int. J. Numer. Meth. Engin. 60, 14, 2335--2371.
[8]
M. Anitescu and A. Tasora. 2010. An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47, 2, 207--235.
[9]
A. Beck and M. Teboulle. 2009. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 1, 183--202.
[10]
S. R. Becker, E. J. Candes, and M. C. Grant. 2011. Templates for convex cone problems with applications to sparse signal recovery. Math. Program. Comput. 3, 3, 165--218.
[11]
F. Bertails-Descoubes, F. Cadoux, G. Daviet, and V. Acary. 2011. A nonsmooth Newton solver for capturing exact Coulomb friction in fiber assemblies. ACM Trans. Graph. 30, 1, 6.
[12]
D. Bertsekas. 1976. On the Goldstein-Levitin-Polyak gradient projection method. IEEE Trans. Autom. Control 21, 2, 174--184.
[13]
K. Bodin, C. Lacoursiere, and M. Servin. 2012. Constraint fluids. IEEE Trans. Visual. Comput. Graph. 18, 3, 516--526.
[14]
O. Bonnefon and G. Daviet. 2011. Quartic formulation of Coulomb 3D frictional contact. Tech. rep. Rapport Technique RT-0400, INRIA.
[15]
R. Bridson, R. Fedkiw, and J. Anderson. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594--603.
[16]
N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, and T. Poschel. 1996. Model for collisions in granular gases. Phys. Rev. E53, 5, 5382.
[17]
F. Cadoux. 2009. An optimization-based algorithm for Coulomb's frictional contact. ESAIM: Proc. 27, 54--69.
[18]
Cauchy, A. 1847. Methode generale pour la resolution des systemes d'equations simultanees. Comput. Rend. Sci. Paris 25, 1847, 536--538.
[19]
R. W. Cottle, J.-S. Pang, and R. E. Stone. 2009. The Linear Complementarity Problem. Academic Press, New York.
[20]
P. Cundall. 1971. A computer model for simulating progressive large-scale movements in block rock mechanics. In Proceedings of the International Symposium on Rock Mechanics.
[21]
P. Cundall. 1988. Formulation of a three-dimensional distinct element model-Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int. J. Rock Mechan. Mining Sci. Geomechan. Abstr. 25, 3, 107--116.
[22]
P. Cundall and O. Strack. 1979. A discrete element model for granular assemblies. Geotechniq. 29, 47--65.
[23]
G. Daviet, F. Bertails-Descoubes, and L. Boissieux. 2011. A hybrid iterative solver for robustly capturing Coulomb friction in hair dynamics. ACM Trans. Graph. 30, 139.
[24]
G. De Saxce and Z.-Q. Feng. 1998. The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms. Math. Comput. Model. 28, 4, 225--245.
[25]
R. Delannay, M. Louge, P. Richard, N. Taberlet, and A. Valance. 2007. Towards a theoretical picture of dense granular flows down inclines. Nature Mater. 6, 2, 99--108.
[26]
J. W. Demmel. 2011. SuperLu users' guide. http://crd.lbl.gov/∼xiaoye/SuperLU/superlu_ug.pdf.
[27]
S. P. Dirkse and M. C. Ferris. 1995. The PATH solver: A nonmonotone stabilization scheme for mixed complementarity problems. Optim. Meth. Softw. 5, 2, 123--156.
[28]
K. Erleben. 2007. Velocity-based shock propagation for multibody dynamics animation. ACM Trans. Graph. 26, 2, 12.
[29]
A. Filippov. 1967. Classical solutions of differential equations with multi-valued right-hand side. SIAM J. Control 5, 4, 609--621.
[30]
D. M. Flickinger, J. Williams, and J. Trinkle. 2013. What's wrong with collision detection in multibody dynamic simulation? In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'13). 959--964.
[31]
C. Glocker and F. Pfeiffer. 2006. An LCP-approach for multibody systems with planar friction. In Proceedings of the International Symposium on Contact Mechanics (CMIS'06). 13--20.
[32]
E. Guendelman, R. Bridson, and R. Fedkiw. 2003. Nonconvex rigid bodies with stacking. ACM Trans. Graph. 22, 871--878.
[33]
E. J. Haug. 1989. Computer-Aided Kinematics and Dynamics of Mechanical Systems, Vol. 1. Prentice-Hall, Englewood Cliffs, NJ.
[34]
T. Heyn. 2013. On the modeling, simulation, and visualization of many-body dynamics problems with friction and contact. Ph.D. thesis. Department of Mechanical Engineering, University of Wisconsin-Madison.
[35]
T. Heyn, M. Anitescu, A. Tasora, and D. Negrut. 2013. Using Krylov subspace and spectral methods for solving complementarity problems in many-body contact dynamics simulation. Int. J. Numer. Meth. Engin. 95, 7, 541--561.
[36]
Intel. 2013. The Intel math kernel library sparse matrix vector multiply format prototype package. http://software.intel.com/en-us/article/the-intel-math-kernel-library-sparse-matrix-vector-multiply-format-prot otype-package.
[37]
H. M. Jaeger, S. R. Nagel, and R. P. Behringer. 1996. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259--1273.
[38]
K. L. Johnson. 1987. Contact Mechanics. Cambridge University Press.
[39]
C. Kane, E. Repetto, M. Ortiz, and J. Marsden. 1999. Finite element analysis of nonsmooth contact. Comput. Meth. Appl. Mechan. Engin. 180, 1, 1--26.
[40]
D. M. Kaufman and D. K. Pai. 2012. Geometric numerical integration of inequality constrained, nonsmooth Hamiltonian systems. SIAM J. Sci. Comput. 34, 5, A2650--A2703.
[41]
A. Li, R. Serban, and D. Negrut. 2013. A SPIKE-based approach for the parallel solution of sparse linear systems on GPU cards. Tech. rep. TR-2013-05, University of Wisconsin-Madison. http://sbel.wisc.edu/documents/TR-2013-05.pdf.
[42]
S. Luding. 2005. Molecular dynamics simulations of granular materials. In The Physics of Granular Media, H. Hinrichsen and D. E. Wolf, Eds., Wiley-VCH, Weinheim, Germany. 299--324.
[43]
H. Mazhar, J. Bollman, E. Forti, A. Praeger, T. Osswald, and D. Negrut, 2013a. Studying the effect of powder geometry of the selective laser sintering process. Tech. rep. TR-2013-03, Simulation-Based Engineering Laboratory, University of Wisconsin-Madison. http://sbel.wisc.edu/documents/TR-2013-03.pdf.
[44]
H. Mazhar, T. Heyn, A. Pazouki, D. Melanz, A. Seidl, A. Bartholomew, A. Tasora, and D. Negrut. 2013b. Chrono: A parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics. Mechan. Sci. 4, 1, 49--64.
[45]
H. Mazhar, D. Melanz, M. Ferris, and D. Negrut. 2014a. An analysis of several methods for handling hard-sphere frictional contact in rigid multibody dynamics. Tech. rep. TR-2014-11, Simulation-Based Engineering Laboratory, University of Wisconsin-Madison. http://sbel.wisc.edu/documents/TR-2014-11.pdf.
[46]
H. Mazhar, J. Schneider, and D. Negrut. 2014b. Preliminary results for helical anchoring project. Tech. rep. TR-2014-10, Simulation-Based Engineering Laboratory. University of Wisconsin-Madison, http://sbel.wisc.edu/documents/TR-2014-10.pdf.
[47]
H. Mazhar, T. Heyn, and D. Negrut. 2011. A scalable parallel method for large collision detection problems. Multibody Syst. Dynam. 26, 37--55.
[48]
J. J. Moreau and M. Jean. 1996. Numerical treatment of contact and friction: The contact dynamics method. In Proceedings of the 3rd Biennial Joint Conference on Engineering Systems and Analysis (ESDA'96). 201--208.
[49]
A. Nemirovsky and D. B. Yudin. 1983. Problem Complexity and Method Efficiency in Optimization. John Wiley and Sons.
[50]
Y. Nesterov. 2003. A method of solving a convex programming problem with convergence rate O (1/k2). Soviet Math. Doklady 27, 2, 372--376.
[51]
Y. Nesterov. 2003. Introductory Lectures on Convex Optimization: A Basic Course, Vol. 87. Springer.
[52]
B. O'Donoghue and E. Candes. 2012. Adaptive restart for accelerated gradient schemes. ArXiv e-prints.
[53]
T. Poschel and T. Schwager. 2005. Computational Granular Dynamics: Models and Algorithms. Springer.
[54]
T. M. Preclik, K. I. Iglberger, and U. Rude. 2009. Iterative rigid multi-body dynamics. In Proceedings of the Thematic Conference on Multibody Dynamics (ECCOMAS'09).
[55]
T. M. Preclik and U. Rude. 2011. Solution existence and non-uniqueness of Coulomb friction. Tech. rep. 4, Friedrich-Alexander University Erlangen-Nurnberg, Institut fur Informatik, Nurnberg, Germany.
[56]
O. Schenk and K. Gartner. 2004. Solving unsymmetric sparse systems of linear equations with Pardiso. Future Generat. Comput. Syst. 20, 3, 475--487.
[57]
Z. Shojaaee, M. R. Shaebani, L. Brendel, J. Toeroek, and D. E. Wolf. 2012. An adaptive hierarchical domain decomposition method for parallel contact dynamics simulations of granular materials. J. Comput. Phys. 231, 2, 612--628.
[58]
B. Smith, D. M. Kaufman, G. Vouga, R. Tamstorf, and E. Grinspun. 2012. Reflections on simultaneous impact. ACM Trans. Graph. 31, 4, 106:1--106:12.
[59]
D. E. Stewart. 2000. Rigid-body dynamics with friction and impact. SIAM Rev. 42, 1, 3--39.
[60]
D. E. Stewart and J. C. Trinkle. 1996. An implicit time-stepping scheme for rigid-body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Meth. Engin. 39, 2673--2691.
[61]
B.-Y. Su and K. Keutzer. 2012. clSpMV: A cross-platform OpenCL SpMV framework on GPUs. In Proceedings of the 26th ACM International Conference on Supercomputing (ICS'12). ACM Press, New York, 353--364.
[62]
A. Tasora and M. Anitescu. 2013. A complementarity-based rolling friction model for rigid contacts. Meccanica 48, 7, 1643--1659.
[63]
A. Tasora, M. Anitescu, S. Negrini, and D. Negrut. 2013. A compliant visco-plastic particle contact model based on differential variational inequalities. Int. J. Non-Linear Mechan. 53, SI, 2--12.
[64]
A. Tasora, D. Negrut, and M. Anitescu. 2008. Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit. J. Multi-Body Dynam. 222, 4, 315--326.
[65]
R. Tonge, F. Benevolenski, and A. Voroshilov. 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 4, 105.
[66]
J. C. Trinkle. 2003. Formulation of multibody dynamics as complementarity problems. In Proceedings of the 19th Biennial Conference on Mechanical Vibration and Noise, Parts A, B, and C (ASME'03). Vol. 5. ASME.
[67]
J. S. Uehara, M. A. Ambroso, R. P. Ojha, and D. J. Durian. 2003. Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301.
[68]
L. Vu-Quoc, L. Lesburg, and X. Zhang. 2004. An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196, 1, 298--326.
[69]
L. Vu-Quoc and X. Zhang. 1999. An elastoplastic contact force-displacement model in the normal direction: Displacement-driven version. Proc. Royal Soc. London Series A: Math. Phys. Engin. Sci. 455, 1991, 4013--4044.

Cited By

View all
  • (2024)Variable Time-Step Physics Engine with Continuous Compliance Contact Model for Optimal Robotic Grinding Trajectory PlanningSensors10.3390/s2405141524:5(1415)Online publication date: 22-Feb-2024
  • (2024)Mechanics and Morphology of Proliferating Cell Collectives with Self-Inhibiting GrowthPhysical Review Letters10.1103/PhysRevLett.133.158402133:15Online publication date: 10-Oct-2024
  • (2024)An optimization-based discrete element model for dry granular flowsJournal of Computational Physics10.1016/j.jcp.2023.112665498:COnline publication date: 1-Feb-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 3
April 2015
152 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2774971
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 May 2015
Accepted: 01 February 2015
Revised: 01 January 2015
Received: 01 September 2014
Published in TOG Volume 34, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Rigid body dynamics
  2. contact
  3. friction
  4. physics-based simulation

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)70
  • Downloads (Last 6 weeks)7
Reflects downloads up to 28 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Variable Time-Step Physics Engine with Continuous Compliance Contact Model for Optimal Robotic Grinding Trajectory PlanningSensors10.3390/s2405141524:5(1415)Online publication date: 22-Feb-2024
  • (2024)Mechanics and Morphology of Proliferating Cell Collectives with Self-Inhibiting GrowthPhysical Review Letters10.1103/PhysRevLett.133.158402133:15Online publication date: 10-Oct-2024
  • (2024)An optimization-based discrete element model for dry granular flowsJournal of Computational Physics10.1016/j.jcp.2023.112665498:COnline publication date: 1-Feb-2024
  • (2024)Modelling deformation effects in multiple collisions using Collisional-SPHInternational Journal of Solids and Structures10.1016/j.ijsolstr.2023.112578286-287(112578)Online publication date: Jan-2024
  • (2024)A nonsmooth modified symplectic integration scheme for frictional contact dynamics of rigid–flexible multibody systemsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2023.116726420(116726)Online publication date: Mar-2024
  • (2024)Nonsmooth model order reduction for transient tire–road dynamics of frictional contact with ALE formulationsNonlinear Dynamics10.1007/s11071-024-10021-2112:21(18847-18868)Online publication date: 4-Aug-2024
  • (2023)NeighborNet: improved algorithms and implementationFrontiers in Bioinformatics10.3389/fbinf.2023.11786003Online publication date: 20-Sep-2023
  • (2023)Subspace-Preconditioned GPU Projective Dynamics with Contact for Cloth SimulationSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618157(1-12)Online publication date: 10-Dec-2023
  • (2023)A Generalized Constitutive Model for Versatile MPM Simulation and Inverse Learning with Differentiable PhysicsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069256:3(1-20)Online publication date: 24-Aug-2023
  • (2023)An Unconstrained Convex Formulation of Compliant ContactIEEE Transactions on Robotics10.1109/TRO.2022.320907739:2(1301-1320)Online publication date: May-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media