Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Power particles: an incompressible fluid solver based on power diagrams

Published: 27 July 2015 Publication History

Abstract

This paper introduces a new particle-based approach to incompressible fluid simulation. We depart from previous Lagrangian methods by considering fluid particles no longer purely as material points, but also as volumetric parcels that partition the fluid domain. The fluid motion is described as a time series of well-shaped power diagrams (hence the name power particles), offering evenly spaced particles and accurate pressure computations. As a result, we circumvent the typical excess damping arising from kernel-based evaluations of internal forces or density without having recourse to auxiliary Eulerian grids. The versatility of our solver is demonstrated by the simulation of multiphase flows and free surfaces.

Supplementary Material

ZIP File (a50-de_goes.zip)
Supplemental files
MP4 File (a50.mp4)

References

[1]
Adams, B., Pauly, M., Keiser, R., and Guibas, L. J. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. 26, 3.
[2]
Akinci, N., Akinci, G., and Teschner, M. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32, 6.
[3]
Alduan, I., and Otaduy, M. A. 2011. SPH granular flow with friction and cohesion. In Symp. on Comp. Anim., 219--228.
[4]
Ando, R., Thürey, N., and Wojtan, C. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Trans. Graph. 32, 4.
[5]
Aurenhammer, F., Hoffmann, F., and Aronov, B. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1, 61--76.
[6]
Aurenhammer, F. 1987. Power diagrams: properties, algorithms and applications. SIAM J. on Computing 16(1), 78--96.
[7]
Batty, C., and Bridson, R. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Symp. on Comp. Anim., 219--228.
[8]
Becker, M., and Teschner, M. 2007. Weakly compressible SPH for free surface flows. In Symp. on Comp. Anim., 209--217.
[9]
Bodin, K., Lacoursiere, C., and Servin, M. 2012. Constraint Fluids. IEEE Trans. Vis. Comput. Graphics 18, 516--526.
[10]
Boyd, L., and Bridson, R. 2012. MultiFLIP for energetic two-phase fluid simulation. ACM Trans. Graph. 31, 2.
[11]
Brackbill, J., Kothe, D., and Ruppel, H. 1988. FLIP: A low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications 48, 1, 25--38.
[12]
Bridson, R. 2008. Fluid Simulation for Computer Graphics. AK Peters/CRC Press.
[13]
Brochu, T., Batty, C., and Bridson, R. 2010. Matching fluid simulation elements to surface geometry and topology. ACM Trans. Graph. 29, 4.
[14]
Busaryev, O., Dey, T., Wang, H., and Ren, Z. 2012. Animating bubble interactions in a liquid foam. ACM Trans. Graph. 31, 4.
[15]
CGAL, 2015. Computational Geometry Algorithms Library (release 4.5). http://www.cgal.org.
[16]
Clausen, P., Wicke, M., Shewchuk, J., and O'Brien, J. 2013. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Trans. Graph. 32, 2.
[17]
Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Symp. on Comp. Anim., 219--228.
[18]
Cornelis, J., Ihmsen, M., Peer, A., and Teschner, M. 2014. IISPH-FLIP for incompressible fluids. Comp. Graph. Forum 33, 2.
[19]
Cummins, S. J., and Rudman, M. 1999. An SPH projection method. J. Comp. Physics 152, 2, 584--607.
[20]
de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6.
[21]
de Goes, F., Alliez, P., Owhadi, H., and Desbrun, M. 2013. On the equilibrium of simplicial masonry structures. ACM Trans. Graph. 32, 4.
[22]
Desbrun, M., and Gascuel, M.-P. 1996. Smoothed Particles: A new paradigm for animating highly deformable bodies. In EG Computer Animation Symp., 61--76.
[23]
Ellero, M., Serrano, M., and Español, P. 2007. Incompressible Smoothed Particle Hydrodynamics. J. Comp. Physics 226, 2, 1731--1752.
[24]
Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Comput. Struct. 83, 6-7, 479--490.
[25]
Erleben, K., Misztal, M. K., and BÆrentzen, J. A. 2011. Mathematical foundation of the optimization-based fluid animation method. In Symp. on Comp. Anim., 101--110.
[26]
Feldman, B. E., O'Brien, J. F., Klingner, B. M., and Goktekin, T. G. 2005. Fluids in deforming meshes. In Symp. on Comp. Anim., 255--259.
[27]
Golin, M. J., and Na, H. 2003. On the average complexity of 3D Voronoi diagrams of random points on convex polytopes. Computational Geometry 25, 3, 197--231.
[28]
Harlow, F. H. 1963. The particle-in-cell method for numerical solution of problems in fluid dynamics. Experimental arithmetic, high-speed computations and mathematics.
[29]
He, X., Liu, N., Li, S., Wang, H., and Wang, G. 2012. Local Poisson SPH for viscous incompressible fluids. Comp. Graph. Forum 31, 6, 1948--1958.
[30]
Hietel, D., Steiner, K., and Struckmeier, J. 2000. A finite-volume particle method for compressible flows. Math. Models Methods Appl. Sci. 10, 9, 1363--1382.
[31]
Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. 24, 3.
[32]
Hu, X. Y., and Adams, N. A. 2007. An incompressible multiphase SPH method. J. Comp. Physics 227, 1, 264--278.
[33]
Ihmsen, M., Akinci, N., Becker, M., and Teschner, M. 2011. A parallel SPH implementation on multi-core CPUs. Comp. Graph. Forum 30, 1, 99--112.
[34]
Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C., and Teschner, M. 2013. Implicit Incompressible SPH. IEEE Trans. Vis. Comput. Graphics 99.
[35]
Ihmsen, M., Orthmann, J., Solenthaler, B., Kolb, A., and Teschner, M. 2014. SPH fluids in computer graphics. Eurographics STAR Report.
[36]
Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3.
[37]
Kang, N., and Sagong, D. 2014. Incompressible SPH using the divergence-free condition. Comp. Graph. Forum 33, 7, 219--228.
[38]
Klingner, B. M., Feldman, B. E., Chentanez, N., and O'Brien, J. F. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3.
[39]
Lee, H., and Han, S. 2010. Solving the shallow water equations using 2D SPH particles for interactive applications. The Visual Computer 26, 6-8, 865--872.
[40]
Liu, Y., Hao, P., Snyder, J., Wang, W., and Guo, B. 2013. Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. 32, 4.
[41]
Lloyd, S. 1982. Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 2, 129--137.
[42]
Losasso, F., Talton, J., Kwatra, N., and Fedkiw, R. 2008. Two-way coupled SPH and particle level set fluid simulation. IEEE Trans. Vis. Comput. Graphics 14, 4, 797--804.
[43]
Lucy, L. B. 1977. A numerical approach to the testing of the fission hypothesis. Astronomical Journal 82, 1013--1024.
[44]
Macklin, M., and Müller, M. 2013. Position based fluids. ACM Trans. Graph. 32, 4.
[45]
Misztal, M., Erleben, K., Bargteil, A., Fursund, J., Christensen, B., Baerentzen, J., and Bridson, R. 2013. Multiphase flow of immiscible fluids on unstructured moving meshes. IEEE Trans. Vis. Comput. Graphics 20, 1.
[46]
Monaghan, J. 2000. SPH without a tensile instability. J. Comp. Physics 159, 2, 290--311.
[47]
Monaghan, J. J. 2005. Smoothed Particle Hydrodynamics. Reports on Progress in Physics 68, 1703--1759.
[48]
Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 3.
[49]
Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-Optimized Triangulations. ACM Trans. Graph. 30, 4.
[50]
Müller, M., Charypar, D., and Gross, M. 2003. Particle-based fluid simulation for interactive applications. In Symp. on Comp. Anim., 154--159.
[51]
Museth, K. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM Trans. Graph. 32, 3.
[52]
Oñate, E., Idelsohn, S., del Pin, F., and Aubry, R. 2004. The Particle Finite Element Method: An Overview. Int. J. Comp. Meth. 1, 2, 267--307.
[53]
Premože, S., Tasdizen, T., Bigler, J., Lefohn, A., and Whitaker, R. T. 2003. Particle-based simulation of fluids. Comp. Graph. Forum 22, 3, 401--410.
[54]
Raveendran, K., Wojtan, C., and Turk, G. 2011. Hybrid Smoothed Particle Hydrodynamics. In Symp. on Comp. Anim., 33--42.
[55]
Ren, B., Li, C., Yan, X., Lin, M. C., Bonet, J., and Hu, S.-M. 2014. Multiple-fluid sph simulation using a mixture model. ACM Trans. Graph. 33, 5.
[56]
Rycroft, C. H. 2009. Voro++: A three-dimensional Voronoi cell library in C++. Chaos: An Interdisciplinary Journal of Non-linear Science 19, 4.
[57]
Schechter, H., and Bridson, R. 2012. Ghost SPH for animating water. ACM Trans. Graph. 31, 4.
[58]
Serrano, M., Español, P., and Zúniga, I. 2005. Voronoi fluid particle model for Euler equations. J. Statistical Physics 121, 133--147.
[59]
Shadloo, M. S., Zainali, A., Sadek, S. H., and Yildiz, M. 2011. Improved incompressible Smoothed Particle Hydrodynamics method for simulating flow around bluff bodies. Comput. Methods in Appl. Mech. Eng. 200, 9-12, 1008--1020.
[60]
Shao, S., and Lo, E. Y. 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Advances in Water Resources 26, 7, 787--800.
[61]
Side Effects, 2014. Houdini engine. http://www.sidefx.com.
[62]
Sin, F., Bargteil, A. W., and Hodgins, J. K. 2009. A point-based method for animating incompressible flow. In Symp. on Comp. Anim., 247--255.
[63]
Solenthaler, B., and Pajarola, R. 2008. Density contrast SPH interfaces. In Symp. on Comp. Anim., 211--218.
[64]
Solenthaler, B., and Pajarola, R. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 3.
[65]
Solenthaler, B., Bucher, P., Chentanez, N., Mller, M., and Gross, M. 2011. SPH-based shallow water simulation. In VRIPHYS, 39--46.
[66]
Springel, V. 2010. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. Roy. Astron. Soc. 401, 2, 791--851.
[67]
Stam, J., and Fiume, E. 1995. Depicting fire and other gaseous phenomena using diffusion processes. In SIGGRAPH, 129--136.
[68]
Stam, J. 1999. Stable fluids. In SIGGRAPH, 121--128.
[69]
Steinhoff, J., and Underhill, D. 1994. Modification of the Euler equations for vorticity confinement: Application to the computation of interacting vortex rings. Physics of Fluids 6, 8, 2738--2744.
[70]
Takahashi, T., Dobashi, Y., Fujishiro, I., Nishita, T., and Lin, M. C. 2015. Implicit formulation for SPH-based viscous fluids. Comp. Graph. Forum.
[71]
Tang, T. 2004. Moving mesh methods for computational fluid dynamics. In Contemporary Mathematics, no. 383, 141--173.
[72]
Whitehurst, R. 1995. A free Lagrange method for gas dynamics. Mon. Not. Roy. Astron. Soc. 277, 2, 655--680.
[73]
Yan, D.-M., Wang, K., Lévy, B., and Alonso, L. 2011. Computing 2D periodic centroidal Voronoi tessellation. In Int. Symp. on Voronoi Diagrams, 177--184.
[74]
Yan, D.-M., Wang, W., Lévy, B., and Liu, Y. 2013. Efficient computation of clipped Voronoi diagram. Computer-Aided Design 45, 4, 843--852.
[75]
Zheng, W., Zhu, B., Kim, B., and Fedkiw, R. 2015. A new incompressibility discretization for a hybrid particle MAC grid representation with surface tension. J. of Comp. Physics 280, 96--142.
[76]
Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3, 965--972.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 4
August 2015
1307 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2809654
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2015
Published in TOG Volume 34, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Lagrangian fluid simulation
  2. free surface
  3. incompressibility
  4. multiphase flows
  5. power diagrams

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)131
  • Downloads (Last 6 weeks)3
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Differentiable Voronoi Diagrams for Simulation of Cell-Based Mechanical SystemsACM Transactions on Graphics10.1145/365815243:4(1-11)Online publication date: 19-Jul-2024
  • (2024)Lagrangian Covector Fluid with Free SurfaceACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657514(1-10)Online publication date: 13-Jul-2024
  • (2024)Neural Monte Carlo Fluid SimulationACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657438(1-11)Online publication date: 13-Jul-2024
  • (2024)On the Basic Properties and the Structure of Power CellsJournal of Optimization Theory and Applications10.1007/s10957-024-02435-0203:2(1246-1262)Online publication date: 15-May-2024
  • (2024)Quantitative Stability of the Pushforward Operation by an Optimal Transport MapFoundations of Computational Mathematics10.1007/s10208-024-09669-4Online publication date: 19-Jul-2024
  • (2023)Power Plastics: A Hybrid Lagrangian/Eulerian Solver for Mesoscale Inelastic FlowsACM Transactions on Graphics10.1145/361834442:6(1-11)Online publication date: 5-Dec-2023
  • (2023)High-Order Moment-Encoded Kinetic Simulation of Turbulent FlowsACM Transactions on Graphics10.1145/361834142:6(1-13)Online publication date: 5-Dec-2023
  • (2023)Improved Water Sound Synthesis using Coupled BubblesACM Transactions on Graphics10.1145/359242442:4(1-13)Online publication date: 26-Jul-2023
  • (2023)PolyStokes: A Polynomial Model Reduction Method for Viscous Fluid SimulationACM Transactions on Graphics10.1145/359214642:4(1-13)Online publication date: 26-Jul-2023
  • (2023)Fluid-Solid Coupling in Kinetic Two-Phase Flow SimulationACM Transactions on Graphics10.1145/359213842:4(1-14)Online publication date: 26-Jul-2023
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media