Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Vector graphics animation with time-varying topology

Published: 27 July 2015 Publication History

Abstract

We introduce the Vector Animation Complex (VAC), a novel data structure for vector graphics animation, designed to support the modeling of time-continuous topological events. This allows features of a connected drawing to merge, split, appear, or disappear at desired times via keyframes that introduce the desired topological change. Because the resulting space-time complex directly captures the time-varying topological structure, features are readily edited in both space and time in a way that reflects the intent of the drawing. A formal description of the data structure is provided, along with topological and geometric invariants. We illustrate our modeling paradigm with experimental results on various examples.

Supplementary Material

ZIP File (a145-dalstein.zip)
Supplemental files
MP4 File (a145.mp4)

References

[1]
Agarwala, A., Hertzmann, A., Salesin, D. H., and Seitz, S. M. 2004. Keyframe-based tracking for rotoscoping and animation. ACM Trans. Graph. 23, 3, 584--591.
[2]
Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proceedings of SIGGRAPH 2000, 157--164.
[3]
Asente, P., Schuster, M., and Pettit, T. 2007. Dynamic planar map illustration. ACM Trans. Graph. 26, 3, 30:1--30:10.
[4]
Baudelaire, P., and Gangnet, M. 1989. Planar maps: An interaction paradigm for graphic design. In Proceedings of CHI '89, 313--318.
[5]
Baxter, W., Barla, P., and Anjyo, K.-I. 2009. Compatible embedding for 2d shape animation. IEEE Trans. on Visualization and Computer Graphics 15, 5, 867--879.
[6]
Bénard, P., Lu, J., Cole, F., Finkelstein, A., and Thollot, J. 2012. Active strokes: Coherent line stylization for animated 3d models. In Proceedings of NPAR '12, 37--46.
[7]
Bénard, P., Hertzmann, A., and Kass, M. 2014. Computing smooth surface contours with accurate topology. ACM Trans. Graph. 33, 2, 19:1--19:21.
[8]
Blair, P. 1994. Cartoon animation. How to Draw and Paint Series. W. Foster Pub.
[9]
Bregler, C., Loeb, L., Chuang, E., and Deshpande, H. 2002. Turning to the masters: Motion capturing cartoons. ACM Trans. Graph. 21, 3, 399--407.
[10]
Buchholz, B., Faraj, N., Paris, S., Eisemann, E., and Boubekeur, T. 2011. Spatio-temporal analysis for parameterizing animated lines. In Proceedings of NPAR '11, 85--92.
[11]
Burtnyk, N., and Wein, M. 1971. Computer-generated keyframe animation. Journal of the Society of Motion Picture & Television Engineers 80, 3, 149--153.
[12]
Catmull, E. 1978. The problems of computer-assisted animation. SIGGRAPH Comput. Graph. 12, 3, 348--353.
[13]
Dalstein, B., Ronfard, R., and van de Panne, M. 2014. Vector graphics complexes. ACM Trans. Graph. 33, 4, 133:1--133:12.
[14]
de Floriani, L., Hui, A., Panozzo, D., and Canino, D. 2010. A dimension-independent data structure for simplicial complexes. In Proceedings of the 19th International Meshing Roundtable, 403--420.
[15]
de Juan, C. N., and Bodenheimer, B. 2006. Re-using traditional animation: methods for semi-automatic segmentation and inbetweening. In Proceedings of SCA '06, 223--232.
[16]
Eisemann, E., Paris, S., and Durand, F. 2009. A visibility algorithm for converting 3D meshes into editable 2D vector graphics. ACM Trans. Graph. 28, 3, 83:1--83:8.
[17]
Fausett, E., Pasko, A., and Adzhiev, V. 2000. Space-time and higher dimensional modeling for animation. In Proceedings of Computer Animation 2000, 140--145.
[18]
Fekete, J.-D., Bizouarn, E., Cournarie, E., Galas, T., and Taillefer, F. 1995. TicTacToon: A paperless system for professional 2D animation. In Proceedings of SIGGRAPH 95, 79--90.
[19]
Fiore, F. D., Schaeken, P., Elens, K., and Reeth, F. V. 2001. Automatic in-betweening in computer assisted animation by exploiting 2.5D modelling techniques. In Proceedings of Computer Animation 2001, 192--200.
[20]
Fu, H., Tai, C.-L., and Au, O. K.-c. 2005. Morphing with laplacian coordinates and spatial-temporal texture. In Proceedings of Pacific Graphics 2005, 100--102.
[21]
Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3, 1134--1141.
[22]
Karsch, K., and Hart, J. C. 2011. Snaxels on a plane. In Proceedings of NPAR '11, 35--42.
[23]
Koenderink, J. J., and Doorn, A. J. v. 2002. Image processing done right. In Proceedings of the 7th European Conference on Computer Vision, 158--172.
[24]
Kort, A. 2002. Computer aided inbetweening. In Proceedings of NPAR '02, 125--132.
[25]
Kwarta, V., and Rossignac, J. 2002. Space-time surface simplification and edgebreaker compression for 2D cel animations. International Journal of Shape Modeling 8, 2, 119--137.
[26]
Lasseter, J. 1987. Principles of traditional animation applied to 3d computer animation. SIGGRAPH Comput. Graph. 21, 4, 35--44.
[27]
Lienhardt, P. 1994. N-dimensional generalized combinatorial maps and cellular quasi-manifolds. International Journal of Computational Geometry & Applications 04, 03, 275--324.
[28]
Liu, D., Chen, Q., Yu, J., Gu, H., Tao, D., and Seah, H. S. 2011. Stroke correspondence construction using manifold learning. Computer Graphics Forum 30, 8, 2194--2207.
[29]
McCann, J., and Pollard, N. 2009. Local layering. ACM Trans. Graph. 28, 3, 84:1--84:7.
[30]
Ngo, T., Cutrell, D., Dana, J., Donald, B., Loeb, L., and Zhu, S. 2000. Accessible animation and customizable graphics via simplicial configuration modeling. In Proceedings of SIGGRAPH 2000, 403--410.
[31]
Noris, G., Sýkora, D., Coros, S., Whited, B., Simmons, M., Hornung, A., Gross, M., and Sumner, R. W. 2011. Temporal noise control for sketchy animation. In Proceedings of NPAR '11, 93--98.
[32]
Noris, G., Hornung, A., Sumner, R. W., Simmons, M., and Gross, M. 2013. Topology-driven vectorization of clean line drawings. ACM Trans. Graph. 32, 1, 4:1--4:11.
[33]
Orzan, A., Bousseau, A., Winnemöller, H., Barla, P., Thollot, J., and Salesin, D. 2008. Diffusion curves: A vector representation for smooth-shaded images. ACM Trans. Graph. 27, 3, 92:1--92:8.
[34]
Patterson, J. W., Taylor, C. D., and Willis, P. J. 2012. Constructing and rendering vectorised photographic images. The Journal of Virtual Reality and Broadcasting 9, 3.
[35]
Pesco, S., Tavares, G., and Lopes, H. 2004. A stratification approach for modeling two-dimensional cell complexes. Computers & Graphics 28, 2, 235--247.
[36]
Raveendran, K., Wojtan, C., Thuerey, N., and Turk, G. 2014. Blending liquids. ACM Trans. Graph. 33, 4, 137:1--137:10.
[37]
Reeves, W. T. 1981. Inbetweening for computer animation utilizing moving point constraints. SIGGRAPH Comput. Graph. 15, 3, 263--269.
[38]
Rivers, A., Igarashi, T., and Durand, F. 2010. 2.5D cartoon models. ACM Trans. Graph. 29, 4, 59:1--59:7.
[39]
Rossignac, J., and O'Connor, M. 1989. SGC: A Dimension-independent Model for Pointsets with Internal Structures and Incomplete Boundaries. Research report. IBM T. J. Watson Research Center.
[40]
Sebastian, T. B., Klein, P. N., and Kimia, B. B. 2003. On aligning curves. IEEE Trans. on Pattern Analysis and Machine Intelligence 25, 1, 116--125.
[41]
Sederberg, T. W., Gao, P., Wang, G., and Mu, H. 1993. 2-D shape blending: an intrinsic solution to the vertex path problem. In Proceedings of SIGGRAPH 93, 15--18.
[42]
Southern, R. 2008. Animation manifolds for representing topological alteration. Tech. Rep. UCAM-CL-TR-723, University of Cambridge, Computer Laboratory.
[43]
Sýkora, D., Dingliana, J., and Collins, S. 2009. As-rigid-as-possible image registration for hand-drawn cartoon animations. In Proceedings of NPAR '09, 25--33.
[44]
Sýkora, D., Ben-Chen, M., Čadík, M., Whited, B., and Simmons, M. 2011. TexToons: practical texture mapping for hand-drawn cartoon animations. In Proceedings of NPAR '11, 75--84.
[45]
Thomas, F., and Johnston, O. 1987. Disney Animation: The Illusion of Life. Abbeville Press.
[46]
Weiler, K. 1985. Edge-based data structures for solid modeling in curved-surface environments. IEEE Computer Graphics and Applications 5, 1, 21--40.
[47]
Whited, B., Noris, G., Simmons, M., Sumner, R., Gross, M., and Rossignac, J. 2010. BetweenIT: An interactive tool for tight inbetweening. Computer Graphics Forum 29, 2, 605--614.
[48]
Yu, J., Bian, W., Song, M., Cheng, J., and Tao, D. 2012. Graph based transductive learning for cartoon correspondence construction. Neurocomputing 79, 0, 105--114.
[49]
Zhang, S.-H., Chen, T., Zhang, Y.-F., Hu, S.-M., and Martin, R. R. 2009. Vectorizing cartoon animations. IEEE Trans. on Visualization and Computer Graphics 15, 4, 618--629.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 34, Issue 4
August 2015
1307 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2809654
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 July 2015
Published in TOG Volume 34, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 2D
  2. animation
  3. boundary-based representation
  4. cell complex
  5. space-time
  6. topology
  7. vector graphics

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)65
  • Downloads (Last 6 weeks)13
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Skeleton-Driven Inbetweening of Bitmap Character DrawingsACM Transactions on Graphics10.1145/368795543:6(1-19)Online publication date: 19-Dec-2024
  • (2024)Joint Stroke Tracing and Correspondence for 2D AnimationACM Transactions on Graphics10.1145/364989043:3(1-17)Online publication date: 9-Apr-2024
  • (2024)Ciallo: GPU-Accelerated Rendering of Vector Brush StrokesACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657418(1-11)Online publication date: 13-Jul-2024
  • (2024)A Novel Architecture for Image Vectorization with Increasing Granularity2024 IEEE International Conference on Image Processing (ICIP)10.1109/ICIP51287.2024.10647480(1560-1566)Online publication date: 27-Oct-2024
  • (2024)Match-Free Inbetweening Assistant (MIBA): A Practical Animation Tool Without User Stroke CorrespondenceComputer Vision – ACCV 202410.1007/978-981-96-0960-4_6(89-103)Online publication date: 8-Dec-2024
  • (2023)Bézier Spline Simplification Using Locally Integrated Error MetricsSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618248(1-11)Online publication date: 10-Dec-2023
  • (2023)CurveCrafter: A System for Animated Curve ManipulationProceedings of the 36th Annual ACM Symposium on User Interface Software and Technology10.1145/3586183.3606792(1-11)Online publication date: 29-Oct-2023
  • (2023)Efficient Interpolation of Rough Line DrawingsComputer Graphics Forum10.1111/cgf.1494642:7Online publication date: 5-Nov-2023
  • (2023)Non‐linear Rough 2D Animation using Transient EmbeddingsComputer Graphics Forum10.1111/cgf.1477142:2(411-425)Online publication date: 23-May-2023
  • (2023)SSK: Robotic Pen-Art System for Large, Nonplanar CanvasIEEE Transactions on Robotics10.1109/TRO.2023.326858539:4(3106-3119)Online publication date: 1-Aug-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media