Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Interactive Acoustic Transfer Approximation for Modal Sound

Published: 29 December 2015 Publication History

Abstract

Current linear modal sound models are tightly coupled with their frequency content. Both the modal vibration of object surfaces and the resulting sound radiation depend on the vibration frequency. Whenever the user tweaks modal parameters to adjust frequencies the modal sound model changes completely, necessitating expensive recomputation of modal vibration and sound radiation.
We propose a new method for interactive and continuous editing as well as exploration of modal sound parameters. We start by sampling a number of key points around a vibrating object, and then devise a compact, low-memory representation of frequency-varying acoustic transfer values at each key point using Prony series. We efficiently precompute these series using an adaptive frequency sweeping algorithm and volume-velocity-preserving mesh simplification. At runtime, we approximate acoustic transfer values using standard multipole expansions. Given user-specified modal frequencies, we solve a small least-squares system to estimate the expansion coefficients, and thereby quickly compute the resulting sound pressure value at arbitrary listening locations. We demonstrate the numerical accuracy, the runtime performance of our method on a set of comparisons and examples, and evaluate sound quality with user perception studies.

Supplementary Material

li (li.zip)
Supplemental movie, appendix, image and software files for, Interactive Acoustic Transfer Approximation for Modal Sound

References

[1]
S. Adhikari and J. Woodhouse. 2001. Identification of damping: Part 1, viscous damping. Journal of Sound and Vibration 243, 1, 43--61.
[2]
N. Bonneel, G. Drettakis, N. Tsingos, I. Viaud-Delmon, and D. James, 2008. Fast modal sounds with scalable frequency-domain synthesis. ACM Trans. Graph. 27, 3.
[3]
A. Burton and G. Miller. 1971. The application of integral equation methods to the numerical solution of some exterior boundary-value problems. In Proceedings of the Royal Society of London. Series A. Math Phys Sci. 201--10.
[4]
J. N. Chadwick, S. S. An, and D. L. James. 2009. Harmonic Shells: A practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5, 1--10.
[5]
J. Chowning. 1973. The synthesis of complex audio spectra by means of frequency modulation. J. Audio Eng. Soc. 21, 7, 526--534.
[6]
R. Ciscowski and C. Brebbia. 1991. Boundary Element Methods in Acoustics. Computational Mechanics Publications and Elsevier Applied Science, Southampton.
[7]
P. R. Cook. 2002. Real Sound Synthesis for Interactive Applications. A. K. Peters, Ltd., Natick, MA.
[8]
R. Corbett, K. van den Doel, J. E. Lloyd, and W. Heidrich, 2007. Timbrefields: 3d interactive sound models for real-time audio. Presence 16, 6, 643--654.
[9]
L. Cremer, M. Heckl, and B. Petersson. 2005. Structure-Borne Sound: Structural Vibrations and Sound Radiation at Audio Frequencies. Springer.
[10]
T. A. Funkhouser, P. Min, and L. I. Carlbom. 1999. Real-time acoustic modeling for distributed virtual environments. In Proceedings of SIGGRAPH. 365--374.
[11]
K. Gallivan, E. Grimme, and P. V. Dooren. 1994. Asymptotic waveform evaluation via a Lanczos method. Appl. Math. Lett. 7, 5, 75--80.
[12]
M. Garland and P. S. Heckbert. 1997. Surface simplification using quadric error metrics. In Proceedings of SIGGRAPH. 209--216.
[13]
N. A. Gumerov and R. Duraiswami. 2004. Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, first ed. Elsevier Science.
[14]
R. W. Hamming. 1983. Digital Filters. Prentice-Hall.
[15]
J. Hauer, C. Demeure, and L. Scharf. 1990. Initial results in prony analysis of power system response signals. IEEE Transactions on Power Systems 5, 1, 80--89.
[16]
H. Hoppe. 1999. New quadric metric for simplifying meshes with appearance attributes. In IEEE Visualization. 59--66.
[17]
D. L. James, J. Barbic, and D. K. Pai. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Trans. Graph. 25, 3, 987--995.
[18]
D. L. James and D. K. Pai. 2002. Dyrt: Dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3.
[19]
A. J. Jerri. 2005. The Shannon sampling theorem: Its various extensions and applications: A tutorial review. Proceedings of the IEEE 65, 11, 1565--1596.
[20]
M. E. Johnson and S. J. Elliott. 1995. Active control of sound radiation using volume velocity cancellation. Journal of the Acoustical Society of America 4, 98, 2174--2186.
[21]
J. Karlsson. 1976. Rational interpolation and best rational approximation. Journal of Mathematical Analysis and Applications 53, 1, 38--52.
[22]
D. M. Kaufman, S. Sueda, D. L. James, and D. K. Pai. 2008. Staggered projections for frictional contact in multibody systems. ACM Trans. Graph. 27, 5, 164:1--164:11.
[23]
R. L. Klatzky, D. K. Pai, and E. P. Krotkov. 2000. Perception of material from contact sounds. Presence: Teleop. Virtual Environ. 9, 4, 399--410.
[24]
T. R. Langlois, S. S. An, K. K. Jin, and D. L. James. 2014. Eigenmode compression for modal sound models. ACM Trans. Graph. 33, 4.
[25]
M. S. Lenzi, S. Lefteriu, H. Beriot, and W. Desmet. 2013. A fast frequency sweep approach using padé approximations for solving Helmholtz finite element models. Journal of Sound and Vibration 332, 1897--1917.
[26]
P. Lindstrom and G. Turk. 1998. Fast and memory efficient polygonal simplification. In IEEE Visualization. 279--286.
[27]
Y. J. Liu. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press.
[28]
B. Lloyd, N. Raghuvanshi, and N. K. Govindaraju. 2011. Sound synthesis for impact sounds in video games. In Proceedings of the Symposium on Interactive 3D Graphics and Games.
[29]
T. Lobos, J. Rezmer, and P. Schegner. 2003. Parameter estimation of distorted signals using prony method. In Power Tech Conference Proceedings, IEEE. Vol. 4. 5 pp.
[30]
D. P. Luebke. 2001. A developer's survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21, 3, 24--35.
[31]
T. Matsumoto, C. Zheng, S. Harada, and T. Takahashi. 2010. Explicit evaluation of hypersingular boundary integral equation for 3-d Helmholtz equation discretized with constant triangular element. J. Comput. Sci. Technol. 4, 3, 194--206.
[32]
R. Mehra, N. Raghuvanshi, L. Antani, A. Chandak, S. Curtis, and D. Manocha. 2013. Wave-based sound propagation in large open scenes using an equivalent source formulation. ACM Trans. Graph. 32, 2, 19:1--19:13.
[33]
M. Meyer and J. Anderson. 2007. Key point subspace acceleration and soft caching. ACM Trans. Graph. 26, 3.
[34]
J. F. O'Brien, P. R. Cook, and G. Essl. 2001. Synthesizing sounds from physically based motion. In Proceedings of ACM SIGGRAPH 2001. Computer Graphics Proceedings, Annual Conference Series. 529--536.
[35]
J. F. O'Brien, C. Shen, and C. M. Gatchalian. 2002. Synthesizing sounds from rigid-body simulations. In Proceedings of the ACM SIGGRAPH 2002 Symposium on Computer Animation. 175--181.
[36]
D. K. Pai, K. van den Doel, D. L. James, J. Lang, J. E. Lloyd, J. L. Richmond, and S. H. Yau. 2001. Scanning physical interaction behavior of 3d objects. In Proceedings of SIGGRAPH. 87--96.
[37]
S. Pelzer and M. Vorländer. 2010. Frequency-and time-dependent geometry for real-time auralizations. In Proceedings of the 20th International Congress on Acoustics.
[38]
A. Pentland and J. Williams. 1989. Good vibrations: model dynamics for graphics and animation. In Proceedings of SIGGRAPH. Vol. 23. 215--222.
[39]
H. Penttinen, J. Pakarinen, V. Välimäki, M. Laurson, H. Li, and M. Leman. 2006. Model-based sound synthesis of the guqin. J. Acoustical Society of America 120, 6.
[40]
L. T. Pillage and R. A. Rohrer. 1990. Asymptotic waveform evaluation for timing analysis. IEEE Trans. Computer-Aided Design 9, 352--366.
[41]
W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. 2007. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press.
[42]
N. Raghuvanshi and M. C. Lin. 2006. Interactive sound synthesis for large scale environments. In Proceedings of SI3D. 101--108.
[43]
N. Raghuvanshi, J. Snyder, R. Mehra, M. Lin, and N. Govindaraju. Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. 29, 4, 68:1--68:11.
[44]
Z. Ren, H. Yeh, and M. Lin. 2010. Synthesizing contact sounds between textured objects. In Proceedings of IEEE Virtual Reality.
[45]
Z. Ren, H. Yeh, and M. Lin. 2013. Example-guided physically based modal sound synthesis. ACM Trans. Graph. 32, 1, 1:1--1:16.
[46]
A. A. Shabana. 1991. Theory of Vibration, Volume II: Discrete and Continuous Systems, first ed. Springer.
[47]
S. Siltanen, T. Lokki, L. Savioja, and C. Lynge Christensen. 2008. Geometry reduction in room acoustics modeling. Acta Acustica united with Acustica 94, 3, 410--418.
[48]
J. O. Smith. 1985. A new approach to digital reverberation using closed waveguide networks. In Proceedings of the International Computer Music Conference. 47--53.
[49]
J. Strawn. 1987. Editing time-varying spectra. J. Audio Eng. Soc. 35, 5, 337--352.
[50]
T. Takala and J. K. Hahn. 1992. Sound rendering. In Proceedings of SIGGRAPH. 211--220.
[51]
J. Tan, G. Turk, and C. K. Liu. 2012. Soft body locomotion. ACM Trans. Graph. 31, 4, 26:1--26:11.
[52]
N. Tsingos, I. Carlbom, G. Elbo, R. Kubli, and T. Funkhouser. 2002. Validation of acoustical simulations in the “Bell Labs Box”. IEEE Computer Graphics and Applications 22, 4, 28--37.
[53]
N. Tsingos, C. Dachsbacher, S. Lefebvre, and M. Dellepiane. 2007. Instant sound scattering. In Proceedings of the 18th Eurographics Conference on Rendering Techniques. 111--120.
[54]
N. Tsingos, T. A. Funkhouser, A. Ngan, and I. Carlbom. 2001. Modeling acoustics in virtual environments using the uniform theory of diffraction. In Proceedings of SIGGRAPH. 545--552.
[55]
K. van den Doel, P. G. Kry, and D. K. Pai. 2001. Foleyautomatic: Physically-based sound effects for interactive simulation and animation. In Proceedings of SIGGRAPH. 537--544.
[56]
K. van den Doel and D. K. Pai. 1996. Synthesis of shape dependent sounds with physical modeling. In Proceedings of the International Conference on Auditory Display. Xerox PARC, Palo Alto.
[57]
C. Zheng and D. L. James. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 4.
[58]
C. Zheng and D. L. James. 2011. Toward high-quality modal contact sound. ACM Trans. Graph. 30, 4.

Cited By

View all
  • (2024)SPEALProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i6.28446(6279-6287)Online publication date: 20-Feb-2024
  • (2024)Medial Skeletal Diagram: A Generalized Medial Axis Approach for Compact 3D Shape RepresentationACM Transactions on Graphics10.1145/368796443:6(1-23)Online publication date: 19-Dec-2024
  • (2024)MATTopo: Topology-preserving Medial Axis Transform with Restricted Power DiagramACM Transactions on Graphics10.1145/368776343:6(1-16)Online publication date: 19-Dec-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 1
December 2015
150 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2870647
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 December 2015
Accepted: 01 August 2015
Revised: 01 June 2015
Received: 01 October 2014
Published in TOG Volume 35, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Numerical methods
  2. Prony's method
  3. acoustic transfer
  4. asymptotic waveform evaluation
  5. interactive design
  6. modal vibration

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • generous donations from Intel
  • National Science Foundation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)21
  • Downloads (Last 6 weeks)1
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)SPEALProceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence10.1609/aaai.v38i6.28446(6279-6287)Online publication date: 20-Feb-2024
  • (2024)Medial Skeletal Diagram: A Generalized Medial Axis Approach for Compact 3D Shape RepresentationACM Transactions on Graphics10.1145/368796443:6(1-23)Online publication date: 19-Dec-2024
  • (2024)MATTopo: Topology-preserving Medial Axis Transform with Restricted Power DiagramACM Transactions on Graphics10.1145/368776343:6(1-16)Online publication date: 19-Dec-2024
  • (2024)Medial hex-meshing: high-quality all-hexahedral mesh generation based on medial meshEngineering with Computers10.1007/s00366-023-01925-540:4(2537-2557)Online publication date: 1-Aug-2024
  • (2023)Surface Simplification using Intrinsic Error MetricsACM Transactions on Graphics10.1145/359240342:4(1-17)Online publication date: 26-Jul-2023
  • (2023)S3DS: Self-supervised Learning of 3D Skeletons from Single View ImagesProceedings of the 31st ACM International Conference on Multimedia10.1145/3581783.3612204(6948-6958)Online publication date: 26-Oct-2023
  • (2023)A Psychoacoustic Quality Criterion for Path-Traced Sound PropagationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.321351429:12(5422-5433)Online publication date: 1-Dec-2023
  • (2023)Robustly Extracting Concise 3D Curve Skeletons by Enhancing the Capture of Prominent FeaturesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.316196229:8(3472-3488)Online publication date: 1-Aug-2023
  • (2022)Computing Medial Axis Transform with Feature Preservation via Restricted Power DiagramACM Transactions on Graphics10.1145/3550454.355546541:6(1-18)Online publication date: 30-Nov-2022
  • (2022)NeuralSoundACM Transactions on Graphics10.1145/3528223.353018441:4(1-15)Online publication date: 22-Jul-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media