Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2872427.2883022acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Semantics and Expressive Power of Subqueries and Aggregates in SPARQL 1.1

Published: 11 April 2016 Publication History

Abstract

Answering aggregate queries is a key requirement of emerging applications of Semantic Technologies, such as data warehousing, business intelligence and sensor networks. In order to fulfill the requirements of such applications, the standardisation of SPARQL 1.1 led to the introduction of a wide range of constructs that enable value computation, aggregation, and query nesting. In this paper we provide an in-depth formal analysis of the semantics and expressive power of these new constructs as defined in the SPARQL 1.1 specification, and hence lay the necessary foundations for the development of robust, scalable and extensible query engines supporting complex numerical and analytics tasks.

References

[1]
A. Abelló, O. Romero, T. B. Pedersen, R. B. Llavori, V. Nebot, M. J. A. Cabo, and A. Simitsis. Using semantic web technologies for exploratory OLAP: A survey. IEEE TKDE, 27(2):571--588, 2015.
[2]
S. Ahmetaj, W. Fischl, R. Pichler, M. Simkus, and S. Skritek. Towards reconciling SPARQL and certain answers. In WWW, pages 23--33, 2015.
[3]
R. Angles and C. Gutierrez. The expressive power of SPARQL. In ISWC, pages 114--129, 2008.
[4]
R. Angles and C. Gutierrez. Subqueries in SPARQL. In AMW, 2011.
[5]
D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic. EP-SPARQL: A unified language for event processing and stream reasoning. In WWW, pages 635--644, 2011.
[6]
M. Arenas, S. Conca, and J. Pérez. Counting beyond a yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the standard. In WWW, pages 629--638, 2012.
[7]
M. Arenas, G. Gottlob, and A. Pieris. Expressive languages for querying the semantic web. In PODS, pages 14--26, 2014.
[8]
M. Arenas and J. Pérez. Querying semantic web data with SPARQL. In PODS, pages 305--316, 2011.
[9]
E. A. Azirani, F. Goasdoué, I. Manolescu, and A. Roatiş. Efficient OLAP operations for RDF analytics. In ICDE Workshops, pages 71--76, 2015.
[10]
D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M. Grossniklaus. C-SPARQL: a continuous query language for RDF data streams. Int. J. Semantic Comput., 4(1):3--25, 2010.
[11]
C. Buil Aranda, M. Arenas, Ó. Corcho, and A. Polleres. Federating queries in SPARQL 1.1: Syntax, semantics and evaluation. J. Web Sem., 18(1):1--17, 2013.
[12]
C. Buil Aranda, A. Polleres, and J. Umbrich. Strategies for executing federated queries in SPARQL1.1. In ISWC, pages 390--405, 2014.
[13]
J. Calbimonte, H. Jeung, Ó. Corcho, and K. Aberer. Enabling query technologies for the semantic sensor web. Int. J. Semantic Web Inf. Syst., 8(1):43--63, 2012.
[14]
S. Cohen. Containment of aggregate queries. SIGMOD Record, 34(1):77--85, 2005.
[15]
S. Cohen. Equivalence of queries combining set and bag-set semantics. In PODS, pages 70--79, 2006.
[16]
S. Cohen. Equivalence of queries that are sensitive to multiplicities. VLDB J., 18(3):765--785, 2009.
[17]
S. Cohen, W. Nutt, and Y. Sagiv. Rewriting queries with arbitrary aggregation functions using views. ACM TODS, 31(2):672--715, 2006.
[18]
S. Cohen, W. Nutt, and Y. Sagiv. Deciding equivalences among conjunctive aggregate queries. J. ACM, 54(2), 2007.
[19]
D. Colazzo, F. Goasdoué, I. Manolescu, and A. Roatis. RDF analytics: lenses over semantic graphs. In WWW, pages 467--478, 2014.
[20]
R. Cyganiak and D. Reynolds (Editors). The RDF data cube vocabulary. W3C recommendation, W3C, Jan. 2014.
[21]
L. Etcheverry and A. A. Vaisman. Enhancing OLAP analysis with web cubes. In ESWC, pages 469--483, 2012.
[22]
H. García-Molina, J. D. Ullman, and J. Widom. Database Dystems: The Complete Book. Pearson Education, 2nd edition, 2009.
[23]
S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C recommendation, W3C, Mar. 2013.
[24]
L. Hella, L. Libkin, J. Nurmonen, and L. Wong. Logics with aggregate operators. J. ACM, 48(4):880--907, 2001.
[25]
D. Ibragimov, K. Hose, T. B. Pedersen, and E. Zimányi. Processing aggregate queries in a federation of SPARQL endpoints. In ESWC, pages 269--285, 2015.
[26]
R. Kontchakov, M. Rezk, M. Rodriguez-Muro, G. Xiao, and M. Zakharyaschev. Answering SPARQL queries over databases under OWL 2 QL entailment regime. In ISWC, pages 552--567, 2014.
[27]
E. V. Kostylev and B. Cuenca Grau. On the semantics of SPARQL queries with optional matching under entailment regimes. In ISWC, pages 374--389, 2014.
[28]
E. V. Kostylev, J. L. Reutter, M. Romero Orth, and D. Vrgoc. SPARQL with Property Paths. In ISWC, pages 3--18, 2015.
[29]
E. V. Kostylev, J. L. Reutter, and M. Ugarte. CONSTRUCT queries in SPARQL. In ICDT, pages 212--229, 2015.
[30]
A. Letelier, J. Pérez, R. Pichler, and S. Skritek. Static analysis and optimization of semantic web queries. ACM TODS, 38(4), 2013.
[31]
L. Libkin. Logics with counting and local properties. ACM TOCL, 1(1):33--59, 2000.
[32]
L. Libkin. Expressive power of SQL. Theor. Comput. Sci., 296(3):379--404, 2003.
[33]
K. Losemann and W. Martens. The complexity of evaluating path expressions in SPARQL. In PODS, pages 101--112, 2012.
[34]
J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of SPARQL. ACM TODS, 34(3), 2009.
[35]
A. Polleres. From SPARQL to rules (and back). In WWW, pages 787--796, 2007.
[36]
E. Prud'hommeaux and A. Seaborne. SPARQL query language for RDF. W3C recommendation, W3C, Jan. 2008.
[37]
P. Schäuble and B. Wüthrich. On the expressive power of query languages. ACM TOIS, 12(1):69--91, 1994.
[38]
M. Schmidt, M. Meier, and G. Lausen. Foundations of SPARQL query optimization. In ICDT, pages 4--33, 2010.
[39]
N. Schweikardt. Arithmetic, first-order logic, and counting quantifiers. ACM TOCL, 6(3):634--671, 2005.
[40]
X. Zhang and J. Van den Bussche. On the primitivity of operators in SPARQL. Inf. Process. Lett., 114(9):480--485, 2014.
[41]
X. Zhang and J. Van den Bussche. On the power of SPARQL in expressing navigational queries. Comput. J., 58(11):2841--2851, 2015.
[42]
P. Zhao, X. Li, D. Xin, and J. Han. Graph cube: on warehousing and OLAP multidimensional networks. In SIGMOD, pages 853--864, 2011.

Cited By

View all
  • (2024)Linked Data Generation Methodology and the Geospatial Cross-Sectional Buildings Energy Benchmarking Use CaseEnergies10.3390/en1712300617:12(3006)Online publication date: 18-Jun-2024
  • (2023)FEED2SEARCH: a framework for hybrid-molecule based semantic searchInternational Journal of General Systems10.1080/03081079.2023.219517352:3(343-383)Online publication date: 24-Apr-2023
  • (2021)Computing how-provenance for SPARQL queries via query rewritingProceedings of the VLDB Endowment10.14778/3484224.348423514:13(3389-3401)Online publication date: 28-Oct-2021
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
WWW '16: Proceedings of the 25th International Conference on World Wide Web
April 2016
1482 pages
ISBN:9781450341431
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • IW3C2: International World Wide Web Conference Committee

In-Cooperation

Publisher

International World Wide Web Conferences Steering Committee

Republic and Canton of Geneva, Switzerland

Publication History

Published: 11 April 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. RDF
  2. SPARQL
  3. aggregation
  4. data analytics
  5. expressive power
  6. grouping
  7. linked data
  8. query languages
  9. query nesting
  10. semantics
  11. subqueries
  12. value computation

Qualifiers

  • Research-article

Funding Sources

  • The Royal Society
  • EPSRC

Conference

WWW '16
Sponsor:
  • IW3C2
WWW '16: 25th International World Wide Web Conference
April 11 - 15, 2016
Québec, Montréal, Canada

Acceptance Rates

WWW '16 Paper Acceptance Rate 115 of 727 submissions, 16%;
Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Linked Data Generation Methodology and the Geospatial Cross-Sectional Buildings Energy Benchmarking Use CaseEnergies10.3390/en1712300617:12(3006)Online publication date: 18-Jun-2024
  • (2023)FEED2SEARCH: a framework for hybrid-molecule based semantic searchInternational Journal of General Systems10.1080/03081079.2023.219517352:3(343-383)Online publication date: 24-Apr-2023
  • (2021)Computing how-provenance for SPARQL queries via query rewritingProceedings of the VLDB Endowment10.14778/3484224.348423514:13(3389-3401)Online publication date: 28-Oct-2021
  • (2021)Debugging of Wrong and Missing Answers in SPARQL✱The 18th International Symposium on Database Programming Languages10.1145/3475726.3475727(7-16)Online publication date: 16-Aug-2021
  • (2021)RDFFrames: knowledge graph access for machine learning toolsThe VLDB Journal10.1007/s00778-021-00690-531:2(321-346)Online publication date: 26-Aug-2021
  • (2021)Analytical Queries on Vanilla RDF Graphs with a Guided Query Builder ApproachFlexible Query Answering Systems10.1007/978-3-030-86967-0_4(41-53)Online publication date: 16-Sep-2021
  • (2020)Extraction Patterns to Derive Social Networks from Linked Open Data Using SPARQLInformation10.3390/info1107036111:7(361)Online publication date: 12-Jul-2020
  • (2019)Extracting Ego-Centric Social Networks from Linked Open DataIEEE/WIC/ACM International Conference on Web Intelligence10.1145/3350546.3352570(471-477)Online publication date: 14-Oct-2019
  • (2019)Mining Social Networks from Linked Open DataGraph-Based Representation and Reasoning10.1007/978-3-030-23182-8_16(221-229)Online publication date: 19-Jun-2019
  • (2018)On the satisfiability problem of patterns in SPARQL 1.1Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence10.5555/3504035.3504285(2054-2061)Online publication date: 2-Feb-2018
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media