Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Lightweight eye capture using a parametric model

Published: 11 July 2016 Publication History

Abstract

Facial scanning has become ubiquitous in digital media, but so far most efforts have focused on reconstructing the skin. Eye reconstruction, on the other hand, has received only little attention, and the current state-of-the-art method is cumbersome for the actor, time-consuming, and requires carefully setup and calibrated hardware. These constraints currently make eye capture impractical for general use. We present the first approach for high-quality lightweight eye capture, which leverages a database of pre-captured eyes to guide the reconstruction of new eyes from much less constrained inputs, such as traditional single-shot face scanners or even a single photo from the internet. This is accomplished with a new parametric model of the eye built from the database, and a novel image-based model fitting algorithm. Our method provides both automatic reconstructions of real eyes, as well as artistic control over the parameters to generate user-specific eyes.

Supplementary Material

ZIP File (a117-berard-supp.zip)
Supplemental files.

References

[1]
Allen, B., Curless, B., and Popović, Z. 2003. The space of human body shapes: reconstruction and parameterization from range scans. In ACM Transactions on Graphics (TOG), vol. 22, ACM, 587--594.
[2]
Amberg, B., Romdhani, S., and Vetter, T. 2007. Optimal step nonrigid icp algorithms for surface registration. In Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, IEEE, 1-8.
[3]
Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: shape completion and animation of people. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 408-416.
[4]
Beeler, T., Bickel, B., Sumner, R., Beardsley, P., and Gross, M. 2010. High-quality single-shot capture of facial geometry. ACM Trans. Graphics (Proc. SIGGRAPH).
[5]
Beeler, T., Hahn, F., Bradley, D., Bickel, B., Beardsley, P., Gotsman, C, Sumner, R. W., and Gross, M. 2011. High-quality passive facial performance capture using anchor frames. ACM Trans. Graphics (Proc. SIGGRAPH) 30, 4, 75.
[6]
Bérard, P., Bradley, D., Nitti, M., Beeler, T., and Gross, M. 2014. High-quality capture of eyes. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 33, 6, 223:1--223:12.
[7]
Blanz, V., and Vetter, T. 1999. A morphable model for the synthesis of 3d faces. In Proc. of the 26th annual conference on Computer graphics and interactive techniques, 187--194.
[8]
Boykov, Y., and Kolmogorov, V. 2004. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on 26, 9, 1124--1137.
[9]
Bradley, D., Heidrich, W., Popa, T., and Sheffer, A. 2010. High resolution passive facial performance capture. ACM Trans. Graphics (Proc. SIGGRAPH) 29, 4, 41.
[10]
Brown, B. J., and Rusinkiewicz, S. 2004. Non-rigid range-scan alignment using thin-plate splines. In 3D Data Processing, Visualization and Transmission, 2004. 3DPVT 2004. Proceedings. 2nd International Symposium on, IEEE, 759--765.
[11]
Cao, C., Hou, Q., and Zhou, K. 2014. Displaced dynamic expression regression for real-time facial tracking and animation. ACM Transactions on Graphics (TOG) 33, 4, 43.
[12]
Chen, K., Johan, H., and Mueller-Wittig, W. 2013. Simple and efficient example-based texture synthesis using tiling and deformation. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, 145--152.
[13]
Efros, A. A., and Freeman, W. T. 2001. Image quilting for texture synthesis and transfer. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques, ACM, 341--346.
[14]
Flickr. 2006. Mohammed Alnaser - Mr. Falcon. Creative Commons - Attribution 2.0. https://www.flickr.com/photos/69er/324313066.
[15]
Francois G. Gautron P. Breton G. and Bouatouch K. 2009. Image-based modeling of the human eye. IEEE TVCG 15, 5, 815--827.
[16]
Funkhouser T. Kazhdan M. Shilane P. Min P. Kiefer W. Tal A. Rusinkiewicz S. and Dobkin D. 2004. Modeling by example. In ACM Transactions on Graphics (TOG), vol. 23, ACM, 652--663.
[17]
Fyffe G. Hawkins T. Watts C. Ma W.-C. and Debevec P. 2011. Comprehensive facial performance capture. In Eurographics.
[18]
Fyffe, G., Jones, A., Alexander, O., Ichikari, R., and Debevec, P. 2014. Driving high-resolution facial scans with video performance capture. ACM Trans. Graphics 34, 1, 8:1--8:14.
[19]
Garrido, P., Valgaerts, L., Wu, C., and Theobalt, C. 2013. Reconstructing detailed dynamic face geometry from monocular video. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 32, 6, 158.
[20]
Ghosh, A., Fyffe, G., Tunwattanapong, B., Busch, J., Yu, X., and Debevec, P. 2011. Multiview face capture using polarized spherical gradient illumination. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 30, 6, 129.
[21]
Guo, B., Liang, L., Liu, C., Shum, H.-Y., and Xu, Y. 2001. Real-time texture synthesis by patch-based sampling.
[22]
Haehnel, D., Thrun, S., and Burgard, W. 2003. An extension of the icp algorithm for modeling nonrigid objects with mobile robots. In IJCAI, vol. 3, 915--920.
[23]
Ikemoto, L., Gelfand, N., and Levoy, M. 2003. A hierarchical method for aligning warped meshes. In 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings. Fourth International Conference on, IEEE, 434--441.
[24]
Jacob, M., and Unser, M. 2004. Design of steerable filters for feature detection using canny-like criteria. Pattern Analysis and Machine Intelligence, IEEE Transactions on 26, 8, 1007--1019.
[25]
Kazhdan, M., Funkhouser, T., and Rusinkiewicz, S. 2004. Shape matching and anisotropy. In ACM Transactions on Graphics (TOG), vol. 23, ACM, 623--629.
[26]
Kwatra, V., Schödl, A., Essa, I., Turk, G., and Bobick, A. 2003. Graphcut textures: image and video synthesis using graph cuts. In ACM Transactions on Graphics (ToG), vol. 22, ACM, 277--286.
[27]
Lefohn, A., Budge, B., Shirley, P., Caruso, R., and Reinhard, E. 2003. An ocularist's approach to human iris synthesis. IEEE CG&A 23, 6, 70--75.
[28]
Li, H., Sumner, R. W., and Pauly, M. 2008. Global correspondence optimization for non-rigid registration of depth scans. In Computer graphics forum, vol. 27, Wiley Online Library, 1421--1430.
[29]
Li, J., Xu, W., Cheng, Z., Xu, K., and Klein, R. 2015. Lightweight wrinkle synthesis for 3d facial modeling and animation. Computer-Aided Design 58, 117--122.
[30]
Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Weiss, M., and Debevec, P. 2007. Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. Rendering Techniques, 183--194.
[31]
Mohammed, U., Prince, S. J., and Kautz, J. 2009. Visiolization: generating novel facial images. ACM Transactions on Graphics (TOG) 28, 3, 57.
[32]
Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., Měch, R., and Prusinkiewicz, P. 2009. Self-organizing tree models for image synthesis. In ACM Transactions on Graphics (TOG), vol. 28, ACM, 58.
[33]
Pérez, P., Gangnet, M., and Blake, A. 2003. Poisson image editing. In ACM Transactions on Graphics (TOG), vol. 22, ACM, 313--318.
[34]
Praun, E., Finkelstein, A., and Hoppe, H. 2000. Lapped textures. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 465--470.
[35]
Ramanarayanan, G., and Bala, K. 2007. Constrained texture synthesis via energy minimization. IEEE TVCG 13, 1.
[36]
Rozenberg, G., and Salomaa, A. 1976. The mathematical theory of L systems. Springer.
[37]
Ruhland, K., Andrist, S., Badler, J., Peters, C., Badler, N., Gleicher, M., Mutlu, B., and McDonnell, R. 2014. Look me in the eyes: A survey of eye and gaze animation for virtual agents and artificial systems. In Eurographics State of the Art Reports, 69--91.
[38]
Sagar, M. A., Bullivant, D., Mallinson, G. D., and Hunter, P. J. 1994. A virtual environment and model of the eye for surgical simulation. In Proceedings of Computer Graphics and Interactive Techniques, 205--212.
[39]
Shen, H.-L., and Cai, Q.-Y. 2009. Simple and efficient method for specularity removal in an image. Applied optics 48, 14, 2711--2719.
[40]
Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry processing, ACM, 175--184.
[41]
Suwajanakorn, S., Kemelmacher-Shlizerman, I., and Seitz, S. M. 2014. Total moving face reconstruction. In Computer Vision--ECCV 2014. Springer, 796--812.
[42]
Tai, Y.-W., Liu, S., Brown, M. S., and Lin, S. 2010. Super resolution using edge prior and single image detail synthesis. In CVPR.
[43]
Valgaerts, L., Wu, C., Bruhn, A., Seidel, H.-P., and Theobalt, C. 2012. Lightweight binocular facial performance capture under uncontrolled lighting. ACM Trans. Graph. 31, 6, 187.
[44]
Vlasic, D., Brand, M., Pfister, H., and Popović, J. 2005. Face transfer with multilinear models. In ACM Transactions on Graphics (TOG), vol. 24, ACM, 426--433.
[45]
Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. 2009. State of the art in example-based texture synthesis. In Eurographics 2009, State of the Art Report, EG-STAR, Eurographics Association, 93--117.
[46]
Wikimedia Commons. 1485. Sandro Botticelli - The Birth of the Venus. Public Domain. https://commons.wikimedia.org/wiki/File:Venus_botticelli_detail.jpg.
[47]
Wikimedia Commons. 1887. Vincent Van Gogh - Self-Portrait. Public Domain. https://commons.wikimedia.org/wiki/File:VanGogh_1887_Selbstbildnis.jpg.
[48]
Wikimedia Commons. 2006. Blue Eye Image. GNU Free Documentation License Version 1.2. https://commons.wikimedia.org/wiki/File:Blueye.JPG.

Cited By

View all
  • (2024)EyeIR: Single Eye Image Inverse Rendering In the WildACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657506(1-11)Online publication date: 13-Jul-2024
  • (2024)ShellNeRF: Learning a Controllable High‐resolution Model of the Eye and Periocular RegionComputer Graphics Forum10.1111/cgf.1504143:2Online publication date: 24-Apr-2024
  • (2024)Relightable Gaussian Codec Avatars2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00021(130-141)Online publication date: 16-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 4
July 2016
1396 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2897824
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2016
Published in TOG Volume 35, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. eye capture
  2. eye modelling
  3. face reconstruction

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)25
  • Downloads (Last 6 weeks)4
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)EyeIR: Single Eye Image Inverse Rendering In the WildACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657506(1-11)Online publication date: 13-Jul-2024
  • (2024)ShellNeRF: Learning a Controllable High‐resolution Model of the Eye and Periocular RegionComputer Graphics Forum10.1111/cgf.1504143:2Online publication date: 24-Apr-2024
  • (2024)Relightable Gaussian Codec Avatars2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)10.1109/CVPR52733.2024.00021(130-141)Online publication date: 16-Jun-2024
  • (2024)Automatic data-driven design and 3D printing of custom ocular prosthesesNature Communications10.1038/s41467-024-45345-515:1Online publication date: 27-Feb-2024
  • (2023)EMS: 3D Eyebrow Modeling from Single-View ImagesACM Transactions on Graphics10.1145/361832342:6(1-19)Online publication date: 5-Dec-2023
  • (2023)HACK: Learning a Parametric Head and Neck Model for High-fidelity AnimationACM Transactions on Graphics10.1145/359209342:4(1-20)Online publication date: 26-Jul-2023
  • (2023)State of the Art in Dense Monocular Non‐Rigid 3D ReconstructionComputer Graphics Forum10.1111/cgf.1477442:2(485-520)Online publication date: 23-May-2023
  • (2023)Detailed Eye Region Capture and AnimationComputer Graphics Forum10.1111/cgf.1464241:8(279-282)Online publication date: 20-Mar-2023
  • (2022)SCULPTORACM Transactions on Graphics10.1145/3550454.355546241:6(1-17)Online publication date: 30-Nov-2022
  • (2022)EyeNeRFACM Transactions on Graphics10.1145/3528223.353013041:4(1-16)Online publication date: 22-Jul-2022
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media