Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Parallel recursive filtering of infinite input extensions

Published: 05 December 2016 Publication History

Abstract

Filters with slowly decaying impulse responses have many uses in computer graphics. Recursive filters are often the fastest option for such cases. In this paper, we derive closed-form formulas for computing the exact initial feedbacks needed for recursive filtering infinite input extensions. We provide formulas for the constant-padding (e.g. clamp-to-edge), periodic (repeat) and even-periodic (mirror or reflect) extensions. These formulas were designed for easy integration into modern block-parallel recursive filtering algorithms. Our new modified algorithms are state-of-the-art, filtering images faster even than previous methods that ignore boundary conditions.

Supplementary Material

ZIP File (a204-nehab.zip)
Supplemental file.

References

[1]
Appleton, B. and Talbot, H. 2003. Efficient and consistent recursive filtering of images with reflective extension. In Scale Space'03, Springer-Verlag, LNCS 2695, 699--712.
[2]
Blelloch, G. E. 1990. Prefix sums and their applications. Technical Report CMU-CS-90-190, Carnegie Mellon University.
[3]
Blu, T., Thévenaz, P., and Unser, M. 2001. MOMS: Maximalorder interpolation of minimal support. IEEE Transactions on Image Processing, 10(7):1069--1080.
[4]
Catmull, E. and Rom, R. 1974. A class of local interpolating splines. In Computer Aided Geometric Design, 317--326.
[5]
Chaurasia, G., Ragan-Kelley, J., Paris, S., Drettakis, G., and Durand, F. 2015. Compiling high performance recursive filters. In High Performance Graphics, 85--94.
[6]
Condat, L., Blu, T., and Unser, M. 2005. Beyond interpolation: optimal reconstruction by quasi-interpolation. In IEEE International Conference on Image Processing, volume 1, 33--36.
[7]
Condat, L. and Möller, T. 2011. Quantitative error analysis for the reconstruction of derivatives. IEEE Transactions on Image Processing, 59(6):2965--2969.
[8]
cuFFT library. 2007. URL http://developer.nvidia.com/cuda-toolkit. NVIDIA Corporation.
[9]
Dotsenko, Y., Govindaraju, N. K., Sloan, P.-P., Boyd, C., and Manferdelli, J. 2008. Fast scan algorithms on graphics processors. In Proceedings of the International Conference on Supercomputing, 205--213.
[10]
Duchon, C. E. 1979. Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18(8):1016--1022.
[11]
Gastal, E. S. L. and Oliveira, M. M. 2011. Domain transform for edge-aware image and video processing. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2011), 30(4):69.
[12]
Gastal, E. S. L. and Oliveira, M. M. 2015. High-order recursive filtering of non-uniformly sampled signals for image and video processing. Computer Graphics Forum, 34(2):81--93.
[13]
Govindaraju, N. K., Lloyd, B., Dotsenko, Y., Smith, B., and Manferdelli, J. 2008. High performance discrete fourier transforms on graphics processors. In Proceedings of the IEEE International Conference for High Performance Computing, Networking, Storage, and Analysis, IEEE.
[14]
Hummel, R. 1983. Sampling for spline reconstruction. SIAM Journal on Applied Mathematics, 43(2):278--288.
[15]
Iverson, K. E. 1962. A Programming Language. Wiley.
[16]
Kajiya, J. and Ullner, M. 1981. Filtering high quality text for display on raster scan devices. Computer Graphics (Proceedings of ACM SIGGRAPH 1981), 15(3):7--15.
[17]
Kooge, P. M. and Stone, H. S. 1973. A parallel algorithm for the efficient solution of a general class of recurrence equations. IEEE Transactions on Computers, C-22(8):786--793.
[18]
Malcolm, M. A. and Palmer, J. 1974. A fast method for solving a class of tridiagonal linear systems. Communications of the ACM, 17(1):14--17.
[19]
Martucci, S. A. 1994. Symmetric convolution and the discrete sine and cosine transforms. IEEE Transactions on Signal Processing, 42(5):1038--1051.
[20]
Maximo, A. 2015. Efficient finite impulse response filters in massively-parallel recursive systems. Journal of Real-Time Image Processing, 1--9.
[21]
McCool, M. D. 1995. Analytic antialiasing with prism splines. In Proceedings of ACM SIGGRAPH 1995, 429--436.
[22]
Merrill, D. and Grimshaw, A. 2009. Parallel scan for stream architectures. Technical Report CS2009-14, University of Virginia.
[23]
Meyer, C. D. 2000. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, PA, USA.
[24]
Mitchell, D. P. and Netravali, A. N. 1988. Reconstruction filters in computer graphics. Computer Graphics (Proceedings of ACM SIGGRAPH 1988), 22(4):221--228.
[25]
Nehab, D. and Hoppe, H. 2014. A fresh look at generalized sampling. Foundations and Trends in Computer Graphics and Vision, 8(1):1--84.
[26]
Nehab, D., Maximo, A., Lima, R. S., and Hoppe, H. 2011. GPU-efficient recursive filtering and summed-area tables. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH Asia 2011), 30(6):176.
[27]
Oppenheim, A. V. and Schafer, R. W. 2010. Discrete-Time Signal Processing. Prentice Hall, 3rd edition.
[28]
Podlozhnyuk, V. 2007. Image convolution with CUDA. NVIDIA whitepaper.
[29]
Sacht, L. and Nehab, D. 2015. Optimized quasi-interpolators for image reconstruction. IEEE Transactions on Image Processing, 24(12):5249--5259.
[30]
Sengupta, S., Harris, M., Zhang, Y., and Owens, J. D. 2007. Scan primitives for GPU computing. In Proceedings of Graphics Hardware, 97--106.
[31]
Stone, H. S. 1971. Parallel processing with the perfect shuffle. IEEE Transactions on Computers, C-20(2):153--161.
[32]
Stone, H. S. 1973. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations. Journal of the ACM, 20(1):27--38.
[33]
Sun, X., Mei, X., Jiao, S., Zhou, M., Liu, Z., and Wang, H. 2014. Real-time local stereo via edge-aware disparity propagation. Pattern Recognition Letters, 49:201--206.
[34]
Sung, W. and Mitra, S. 1986. Efficient multi-processor implementation of recursive digital filters. In IEEE International Conference on Acoustics, Speech and Signal Processing, 257--260.
[35]
Sung, W. and Mitra, S. 1992. Multiprocessor implementation of digital filtering algorithms using a parallel block processing method. IEEE Transactions on Parallel and Distributed Systems, 3(1):110--120.
[36]
Triggs, B. and Sdika, M. 2006. Boundary conditions for Young-van Vliet recursive filtering. IEEE Transactions on Signal Processing, 54(5):2365--2367.
[37]
Unser, M. and Aldroubi, A. 1994. A general sampling theory for nonideal acquisition devices. IEEE Transactions on Signal Processing, 42(11):2915--2925.
[38]
Unser, M., Aldroubi, A., and Eden, M. 1991. Fast B-spline transforms for continuous image representation and interpolation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(3):277--285.
[39]
Unser, M., Aldroubi, A., and Eden, M. 1993. The L2-polynomial spline pyramid. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(4):364--379.
[40]
Unser, M., Aldroubi, A., and Eden, M. 1995. Enlargement or reduction of digital images with minimum loss of information. IEEE Transactions on Image Processing, 4(3):247--258.
[41]
Unser, M., Thénevaz, P., and Yaroslavsky, L. 1995. Convolution-based interpolation for fast, high-quality rotation of images. IEEE Transactions on Image Processing, 4(10):1371--1381.
[42]
van Vliet, L. J., Young, I. T., and Verbeek, P. W. 1998. Recursive Gaussian derivative filters. In Proceedings of the 14th International Conference on Pattern Recognition, 509--514 (v. 1).
[43]
Weickert, J., ter Haar Romeny, B. M., and Viergever, M. A. 1998. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3):398--410.
[44]
Zhou, M., Liu, Z., Hong, T., Wang, X., Wang, H., and Sun, X. 2015. Efficient O(1) edge-aware filter. In IEEE International Conference on Image Processing, 1295--1299.

Cited By

View all
  • (2024)SlidingConv: Domain-Specific Description of Sliding Discrete Cosine Transform Convolution for HalideIEEE Access10.1109/ACCESS.2023.334566012(7563-7583)Online publication date: 2024
  • (2023)Local Adaptive Image Filtering Based on Recursive Dilation SegmentationSensors10.3390/s2313577623:13(5776)Online publication date: 21-Jun-2023
  • (2023)Efficient 2D Tikhonov smoothness regularization with recursive filteringPattern Recognition Letters10.1016/j.patrec.2023.07.001175(95-103)Online publication date: Nov-2023
  • Show More Cited By

Index Terms

  1. Parallel recursive filtering of infinite input extensions

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 35, Issue 6
    November 2016
    1045 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2980179
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 December 2016
    Published in TOG Volume 35, Issue 6

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. GPUs
    2. infinite extension
    3. parallel recursive filtering

    Qualifiers

    • Research-article

    Funding Sources

    • FAPERJ
    • CNPq

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 26 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)SlidingConv: Domain-Specific Description of Sliding Discrete Cosine Transform Convolution for HalideIEEE Access10.1109/ACCESS.2023.334566012(7563-7583)Online publication date: 2024
    • (2023)Local Adaptive Image Filtering Based on Recursive Dilation SegmentationSensors10.3390/s2313577623:13(5776)Online publication date: 21-Jun-2023
    • (2023)Efficient 2D Tikhonov smoothness regularization with recursive filteringPattern Recognition Letters10.1016/j.patrec.2023.07.001175(95-103)Online publication date: Nov-2023
    • (2022)An Intelligent System for Detecting Abnormal Behavior in Students Based on the Human Skeleton and Deep LearningComputational Intelligence and Neuroscience10.1155/2022/38194092022Online publication date: 1-Jan-2022
    • (2022)Recursive filtering 2D Tikhonov regularization2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)10.1109/SIBGRAPI55357.2022.9991783(168-173)Online publication date: 24-Oct-2022
    • (2021)GPU efficient 1D and 3D recursive filteringDigital Signal Processing10.1016/j.dsp.2021.103076114(103076)Online publication date: Jul-2021
    • (2020)High-Performance Image Filters via Sparse ApproximationsProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/34061823:2(1-19)Online publication date: 26-Aug-2020
    • (2020)A Survey of Temporal Antialiasing TechniquesComputer Graphics Forum10.1111/cgf.1401839:2(607-621)Online publication date: 13-Jul-2020
    • (2020)Domain transform for spherical geometry imagesComputers & Graphics10.1016/j.cag.2020.09.01693(71-83)Online publication date: Dec-2020
    • (2018)Efficient Computational Scheduling of Box and Gaussian FIR Filtering for CPU Microarchitecture2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)10.23919/APSIPA.2018.8659674(875-879)Online publication date: Nov-2018

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media