Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Optimal voronoi tessellations with hessian-based anisotropy

Published: 05 December 2016 Publication History

Abstract

This paper presents a variational method to generate cell complexes with local anisotropy conforming to the Hessian of any given convex function and for any given local mesh density. Our formulation builds upon approximation theory to offer an anisotropic extension of Centroidal Voronoi Tessellations which can be seen as a dual form of Optimal Delaunay Triangulation. We thus refer to the resulting anisotropic polytopal meshes as Optimal Voronoi Tessellations. Our approach sharply contrasts with previous anisotropic versions of Voronoi diagrams as it employs first-type Bregman diagrams, a generalization of power diagrams where sites are augmented with not only a scalar-valued weight but also a vector-valued shift. As such, our OVT meshes contain only convex cells with straight edges, and admit an embedded dual triangulation that is combinatorially-regular. We show the effectiveness of our technique using off-the-shelf computational geometry libraries.

Supplementary Material

ZIP File (a242-budninskiy.zip)
Supplemental file.

References

[1]
Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. In ACM SIGGRAPH, vol. 24(3), 617--625.
[2]
App, A., and Reif, U. 2010. Piecewise linear orthogonal approximation. SIAM J. Num. Anal. 48, 3, 840--856.
[3]
Aurenhammer, F. 1987. A criterion for the affine equivalence of cell complexes in R<sup>d</sup> and convex polyhedra in R<sup>d+1</sup>. Disc. & Comput. Geom. 2, 1, 49--64.
[4]
Boissonnat, J.-D., Cohen-Steiner, D., and Yvinec, M. 2006. Comparison of algorithms for anisotropic meshing and adaptive refinement. Tech. Rep. ACS-TR-362603, INRIA.
[5]
Boissonnat, J.-D., Wormser, C., and Yvinec, M. 2008. Anisotropic diagrams: Labelle-Shewchuk approach revisited. Theor. Comput. Sci. 408, 2--3, 163--173.
[6]
Boissonnat, J.-D., Nielsen, F., and Nock, R. 2010. Bregman Voronoi diagrams. Disc. & Comput. Geom. 44, 2, 281--307.
[7]
Boissonnat, J.-D., Shi, K.-L., Tournois, J., and Yvinec, M. 2014. Anisotropic Delaunay meshes of surfaces. ACM Trans. Graph.
[8]
Bossen, Frank, J., and Heckbert, P. S. 1996. A pliant method for anisotropic mesh generation. In Int. Meshing Roundtable, 63--76.
[9]
CGAL. 2016. CGAL 4.8 User and Reference Manual. CGAL Editorial Board, http://www.cgal.org.
[10]
Chen, L., and Holst, M. J. 2011. Efficient mesh optimization schemes based on Optimal Delaunay Triangulations. Comput. Methods Appl. Mech. Engrg. 200, 967--984.
[11]
Chen, L., and Xu, J. 2004. Optimal Delaunay triangulations. J. of Comp. Mathematics 22, 2, 299--308.
[12]
Chen, L., Sun, P., and Xu, J. 2007. Optimal anisotropic simplicial meshes for minimizing interpolation errors in L<sup>p</sup>-norm. Math. of Comput. 76, 257, 179--204.
[13]
Chen, Z., Wang, W., Lvy, B., Liu, L., and Sun, F. 2014. Revisiting Optimal Delaunay Triangulation for 3D graded mesh generation. SIAM J. Sci. Comput. 36, 3, 930--954.
[14]
Chen, L. 2004. Mesh smoothing schemes based on Optimal Delaunay Triangulations. In Int. Meshing Roundtable, 109--120.
[15]
Cheng, S.-W., Dey, T. K., Ramos, E. A., and Wenger, R. 2006. Anisotropic surface meshing. In Symp. Disc. Alg., 202--211.
[16]
Dassi, F., Si, H., Perotto, S., and Streckenbach, T. 2015. Anisotropic finite element mesh adaptation via higher dimensional embedding. Procedia Engineering 124, 265--277.
[17]
D'Azevedo, E. F., and Simpson, R. B. 1989. On optimal interpolation triangle incidences. SIAM J. Sci. Stat. Comput. 10, 6, 1063--1075.
[18]
de Goes, F., Breeden, K., Ostromoukhov, V., and Desbrun, M. 2012. Blue noise through optimal transport. ACM Trans. Graph. 31, 6, Art. 171.
[19]
de Goes, F., Alliez, P., Owhadi, H., and Desbrun, M. 2013. On the equilibrium of simplicial masonry structures. ACM Trans. Graph. 32, 4, Art. 93.
[20]
de Goes, F., Wallez, C., Huang, J., Pavlov, D., and Desbrun, M. 2015. Power particles: An incompressible fluid solver based on power diagrams. ACM Trans. Graph. 34, 4, Art. 50.
[21]
Du, Q., and Emelianenko, M. 2006. Acceleration schemes for computing centroidal Voronoi tessellations. Numer. Linear Algebr. 13, 2--3, 173--192.
[22]
Du, Q., and Wang, D. 2005. Anisotropic centroidal Voronoi tessellations and their applications. SIAM J. Sci. Comp. 26, 3, 737--761.
[23]
Du, Q., Faber, V., and Gunzburger, M. 1999. Centroidal Voronoi tesselations. SIAM Review 41, 4, 637--676.
[24]
Frey, P., and Alauzet, F. 2004. Anisotropic metrics for mesh adaptation. In Comput. Fluid Solid Mech., K. Bathe, Ed., 24--28.
[25]
Fu, X.-M., Liu, Y., Snyder, J., and Guo, B. 2014. Anisotropic simplicial meshing using local convex functions. ACM Trans. Graph. 33, 6, Art. 182.
[26]
Gao, Z., Yu, Z., and Holst, M. 2012. Quality tetrahedral mesh smoothing via boundary-optimized Delaunay triangulation. Comput. Aided Geom. Design 29, 9, 707--721.
[27]
George, P., Frey, P., and Alauzet, F. 2002. Automatic generation of 3D adapted meshes. World Congress on Comput. Mech.
[28]
Kuzmin, D. 2010. A Guide to Numerical Methods for Transport Equations. University of Erlangen-Nuremberg.
[29]
Labelle, F., and Shewchuk, J. R. 2003. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation. In Symp. Comp. Geom., 191--200.
[30]
Lee, C. 1991. Regular triangulations of convex polytopes. Applied Geom. & Disc. Math. 4, 443--456.
[31]
Lévy, B., and Bonneel, N. 2013. Variational anisotropic surface meshing with Voronoi parallel linear enumeration. In Int. Meshing Roundtable. 349--366.
[32]
Lévy, B., and Liu, Y. 2010. L<sub>p</sub> Centroidal Voronoi Tessellation and its applications. ACM Trans. Graph. 29, 4, Art. 119.
[33]
Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., and Yang, C. 2009. On Centroidal Voronoi Tessellation - energy smoothness and fast computation. ACM Trans. Graph. 28, 4, Art. 101.
[34]
Liu, Y., Pan, H., Snyder, J., Wang, W., and Guo, B. 2013. Computing self-supporting surfaces by regular triangulation. ACM Trans. Graph. 32, 4, Art. 92.
[35]
Loseille, A., and Alauzet, F. 2009. Optimal 3D highly anisotropic mesh adaptation based on the continuous mesh framework. In Int. Meshing Roundtable. 575--594.
[36]
Loseille, A., and Alauzet, F. 2011. Continuous mesh framework, Part I: Well-posed continuous interpolation error. SIAM J. Num. Anal. 49, 1, 38--60.
[37]
Marsden, J. E., and Tromba, A. 2003. Vector Calculus, 5th ed. W. H. Freeman.
[38]
Memari, P., Mullen, P., and Desbrun, M. 2012. Parametrization of generalized primal-dual triangulations. In Int. Meshing Roundtable. 237--253.
[39]
Mirebeau, J.-M., and Cohen, A. 2011. Greedy bisection generates optimally adapted triangulations. Math. Comp. 81, 811--837.
[40]
Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-optimized triangulations. ACM Trans. Graph. 30, 4, Art. 103.
[41]
Nadler, E. 1986. Piecewise linear best L<sub>2</sub> approximation on triangulations. In Approx. Theory V, C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds. Academic Press, 499--502.
[42]
Nielsen, F., and Nock, R. 2011. Skew Jensen-Bregman Voronoi diagrams. In Transactions on Computational Science XIV, Special Issue on Voronoi Diagrams and Delaunay Triangulation, M. L. Gavrilova, C. J. K. Tan, and M. A. Mostafavi, Eds. Springer, 102--128.
[43]
Richter, R., and Alexa, M. 2015. Mahalanobis centroidal Voronoi tessellations. Comp. & Graph. 46, 48--54.
[44]
Rycroft, C. H. 2009. Voro++: A three-dimensional Voronoi cell library in C++. Chaos: An Interdisciplinary Journal of Nonlinear Science 19, 4.
[45]
Shewchuk, J. 1998. Tetrahedral mesh generation by Delaunay refinement. In Symp. on Comp. Geometry, 86--95.
[46]
Sun, F., Choi, Y.-K., Wang, W., Yan, D.-M., Liu, Y., and Lévy, B. 2011. Obtuse triangle suppression in anisotropic meshes. Comput. Aided Geom. Design 28, 9, 537--548.
[47]
Tournois, J., Wormser, C., Alliez, P., and Desbrun, M. 2009. Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Trans. Graph. 28, 3, Art. 75.
[48]
Valette, S., Chassery, J.-M., and Prost, R. 2008. Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans. Vis. Comp. Graph. 14, 2, 369--381.
[49]
Yan, D.-M., Wang, W., Lévy, B., and Liu, Y. 2013. Efficient computation of clipped Voronoi diagram. Computer-Aided Design 45, 4, 843 -- 852.
[50]
Zhong, Z., Guo, X., Wang, W., Lévy, B., Sun, F., Liu, Y., and Mao, W. 2013. Particle-based anisotropic surface meshing. ACM Trans. Graph. 32, 4, Art. 99.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 6
November 2016
1045 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2980179
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 December 2016
Published in TOG Volume 35, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. anisotropic meshing
  2. bregman diagrams
  3. centroidal voronoi tessellation
  4. optimal delaunay triangulation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)54
  • Downloads (Last 6 weeks)6
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Anisotropic triangular meshing using metric-adapted embeddingsComputer Aided Geometric Design10.1016/j.cagd.2024.102314(102314)Online publication date: Apr-2024
  • (2023)Sensitivity analysis and tailored design of minimization diagramsMathematics of Computation10.1090/mcom/383992:344(2715-2768)Online publication date: 12-May-2023
  • (2023)Meshless power diagramsComputers & Graphics10.1016/j.cag.2023.06.014114(247-256)Online publication date: Aug-2023
  • (2022)Surface Remeshing: A Systematic Literature Review of Methods and Research DirectionsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.301664528:3(1680-1713)Online publication date: 1-Mar-2022
  • (2020)VoroCrustACM Transactions on Graphics10.1145/333768039:3(1-16)Online publication date: 13-May-2020
  • (2019)Gaussian-product subdivision surfacesACM Transactions on Graphics10.1145/3306346.332302638:4(1-11)Online publication date: 12-Jul-2019
  • (2019)Anisotropic Surface Remeshing without Obtuse AnglesComputer Graphics Forum10.1111/cgf.1387738:7(755-763)Online publication date: 14-Nov-2019
  • (2019)Structured Orthogonal Near-Boundary Voronoi Mesh Layers for Planar DomainsNumerical Geometry, Grid Generation and Scientific Computing10.1007/978-3-030-23436-2_2(25-44)Online publication date: 11-Oct-2019
  • (2018)FaceshopACM Transactions on Graphics10.1145/3197517.320139337:4(1-13)Online publication date: 30-Jul-2018
  • (2018)A multi-scale model for simulating liquid-fabric interactionsACM Transactions on Graphics10.1145/3197517.320139237:4(1-16)Online publication date: 30-Jul-2018
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media