Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2988458.2988485acmconferencesArticle/Chapter ViewAbstractPublication Pagessiggraph-asiaConference Proceedingsconference-collections
course

Geometric deep learning

Published: 28 November 2016 Publication History
First page of PDF

References

[1]
3D Animation Online Services, 3D Characters, and Character Rigging - Mixamo. https://www.mixamo.com/. Accessed: 2015-10-03.
[2]
Yobi3D - free 3D model search engine. https://www.yobi3d.com. Accessed: 2015-11-03.
[3]
I. Aizenberg, N. Aizenberg, and J. Vandewalle. Multi-valued and universal binary neurons. Springer, 2000.
[4]
M. Andreux, E. Rodolà, M. Aubry, and D. Cremers. Anisotropic Laplace-Beltrami operators for shape analysis. In Proc. NORDIA, 2014.
[5]
D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis. SCAPE: shape completion and animation of people. Trans. Graphics, pages 408--416, 2005.
[6]
M. Aubry, U. Schlickewei, and D. Cremers. The wave kernel signature: A quantum mechanical approach to shape analysis. In Proc. 4DMOD, 2011.
[7]
P. Baldi and P. Sadowski. The dropout learning algorithm. Artificial Intelligence, 210:78--122, 2014.
[8]
F. Bogo, M. J. Black, M. Loper, and J. Romero. Detailed full-body reconstructions of moving people from monocular RGB-D sequences. In Proc. ICCV, 2015.
[9]
F. Bogo, J. Romero, M. Loper, and M. J. Black. FAUST: Dataset and evaluation for 3D mesh registration. In Proc. CVPR, 2014.
[10]
D. Boscaini, J. Masci, S. Melzi, M. M. Bronstein, U. Castellani, and P. Vandergheynst. Learning class-specific descriptors for deformable shapes using localized spectral convolutional networks. Computer Graphics Forum, 34(5):13--23, 2015.
[11]
D. Boscaini, J. Masci, E. Rodolà, and M. Bronstein. Learning shape correspondence with anisotropic convolutional neural networks. In Proc. NIPS, 2016.
[12]
D. Boscaini, J. Masci, E. Rodolà, M. Bronstein, and D. Cremers. Anisotropic diffusion descriptors. Computer Graphics Forum, 35(2):431--441, 2016.
[13]
L. Breiman. Random forests. In Machine Learning, volume 45, pages 5--32, 2001.
[14]
J. Bromley et al. Signature verification using a "Siamese" time delay neural network. In Proc. NIPS. 1994.
[15]
J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected networks on graphs. In Proc. ICLR, 2014.
[16]
Q. Chen and V. Koltun. Robust nonrigid registration by convex optimization. In IEEE ICCV, 2015.
[17]
A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The loss surfaces of multilayer networks. In Proc. AISTATS, 2015.
[18]
D. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep network learning by exponential linear units (elus). In Proc. ICLR, 2015.
[19]
L. Cosmo, E. Rodolà, M. M. Bronstein, et al. SHREC'16: Partial matching of deformable shapes. In Proc. 3DOR, 2016.
[20]
L. Cosmo, E. Rodolà, J. Masci, A. Torsello, and M. Bronstein. Matching deformable objects in clutter. In Proc. 3DV, 2016.
[21]
A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Foundations and Trends in Computer Graphics and Vision, 7(2-3):81--227, 2012.
[22]
R. Dechter. Learning while searching in constraint-satisfaction-problems. In Proc. AAAI, 1986.
[23]
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-scale hierarchical image database. In Proc. CVPR, 2009.
[24]
A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and T. Brox. FlowNet: Learning optical flow with convolutional networks. In Proc. ICCV, 2015.
[25]
A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In Proc. CVPR, 2015.
[26]
M. Dou, J. Taylor, H. Fuchs, A. Fitzgibbon, and S. Izadi. 3d scanning deformable objects with a single rgbd sensor. In IEEE CVPR, 2015.
[27]
D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio. Why does unsupervised pre-training help deep learning? JMLR, 11, 2010.
[28]
K. Fukushima. Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193--202, 1980.
[29]
J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking, and action recognition. Trans. PAMI, 33(11):2188--2202, 2011.
[30]
X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proc. Conf. Artificial Intelligence and Statistics, 2010.
[31]
I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Proc. NIPS. 2014.
[32]
K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. DRAW: A recurrent neural network for image generation. In Proc. ICML, 2015.
[33]
X. Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. MatchNet: Unifying feature and metric learning for patch-based matching. In Proc. CVPR, 2015.
[34]
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv:1512.03385, 2015.
[35]
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In Proc. ICCV, 2015.
[36]
G. E. Hinton. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8):1771--1800, 2002.
[37]
G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep belief nets. Neural Computation, 18(7):1527--1554, July 2006.
[38]
G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504--507, 2006.
[39]
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Improving neural networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.
[40]
S. Hochreiter and J. Schmidhuber. Simplifying neural nets by discovering flat minima. In Proc. NIPS, 1995.
[41]
S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735--1780, 1997.
[42]
Q. Huang, B. Adams, M. Wicke, and L. J. Guibas. Non-rigid registration under isometric deformations. In Proc. SGP, 2008.
[43]
S. I. and C. S. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167, 2015.
[44]
M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks. In Proc. NIPS, 2015.
[45]
K. Kawaguchi. Deep learning without poor local minima. In Proc. NIPS, 2016.
[46]
V. G. Kim, Y. Lipman, and T. Funkhouser. Blended Intrinsic Maps. Trans. Graphics, 30(4), 2011.
[47]
D. P. Kingma, T. Salimans, and M. Welling. Variational dropout and the local reparameterization trick. In Proc. NIPS. 2015.
[48]
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Proc. NIPS. 2012.
[49]
Z. Lähner, E. Rodolà, M. M. Bronstein, et al. SHREC'16: Matching of deformable shapes with topological noise. In Proc. 3DOR, 2016.
[50]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. IEEE, 86(11):2278--2324, 1998.
[51]
H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proc. ICML, 2009.
[52]
H. Li, B. Adams, L. J. Guibas, and M. Pauly. Robust single-view geometry and motion reconstruction. Trans. Graphics, 28(5), 2009.
[53]
H. Li, E. Vouga, A. Gudym, L. Luo, J. T. Barron, and G. Gusev. 3D self-portraits. Trans. Graphics, 32(6), 2013.
[54]
Y. Lipman and T. Funkhouser. Möbius voting for surface correspondence. Trans. Graphics, 28(3), 2009.
[55]
O. Litany, E. Rodolà, A. M. Bronstein, M. M. Bronstein, and D. Cremers. Non-rigid puzzles. Computer Graphics Forum, 35(5), 2016.
[56]
R. Litman and A. M. Bronstein. Learning spectral descriptors for deformable shape correspondence. Trans. PAMI, 36(1):170--180, 2014.
[57]
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. Proc. CVPR, 2015.
[58]
S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, 2008.
[59]
J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst. Geodesic convolutional neural networks on riemannian manifolds. In Proc. 3dRR, 2015.
[60]
J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolutional autoencoders for hierarchical feature extraction. In Proc. ICANN, 2011.
[61]
D. Maturana and S. Scherer. VoxNet: A 3D convolutional neural network for real-time object recognition. In Conf. Intelligent Robots and Systems, 2015.
[62]
V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu. Recurrent models of visual attention. In Proc. NIPS. 2014.
[63]
R. A. Newcombe, D. Fox, and S. M. Seitz. DynamicFusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proc. CVPR, 2015.
[64]
H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic segmentation. arXiv:1505.04366, 2015.
[65]
K. Olszewski, J. J. Lim, S. Saito, and H. Li. High-fidelity facial and speech animation for VR HMDs. Trans. Graphics, 35(6), 2016.
[66]
M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. J. Guibas. Functional maps: a flexible representation of maps between shapes. Trans. Graphics, 31(4), 2012.
[67]
V. Pham, C. Kermorvant, and J. Louradour. Dropout improves recurrent neural networks for handwriting recognition. arXiv:1312.4569, 2013.
[68]
U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15--36, 1993.
[69]
A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In Proc. ICLR. 2016.
[70]
E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and D. Cremers. Partial functional correspondence. Computer Graphics Forum, 2016.
[71]
E. Rodolà, S. Rota Bulò, T. Windheuser, M. Vestner, and D. Cremers. Dense non-rigid shape correspondence using random forests. In Proc. CVPR, 2014.
[72]
D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 323(6088):533--536, 1986.
[73]
S. Rusinkiewicz, B. Brown, and M. Kazhdan. 3D scan matching and registration. In Proc. ICCV Courses, 2005.
[74]
R. M. Rustamov, M. Ovsjanikov, O. Azencot, M. Ben-Chen, F. Chazal, and L. J. Guibas. Map-based exploration of intrinsic shape differences and variability. Trans. Graphics, 32(4):72, 2013.
[75]
S. Saito, T. Li, and H. Li. Real-time facial segmentation and performance capture from RGB input. In Proc. ECCV, 2016.
[76]
F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. arXiv:1503.03832, 2015.
[77]
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. OverFeat: Integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, 2013.
[78]
J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake. Efficient human pose estimation from single depth images. Trans. PAMI, 35(12):2821--2840, 2012.
[79]
D. I. Shuman, B. Ricaud, and P. Vandergheynst. Vertex-frequency analysis on graphs. arXiv:1307.5708, 2013.
[80]
N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from RGBD images. In Proc. ECCV, 2012.
[81]
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556, 2014.
[82]
S. Song and J. Xiao. Deep sliding shapes for amodal 3D object detection in RGB-D images. arXiv:1511.02300, 2015.
[83]
R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. In Proc. NIPS, 2015.
[84]
R. K. Srivastava, J. Masci, F. J. Gomez, and J. Schmidhuber. Understanding locally competitive networks. In Proc. ICLR, 2015.
[85]
M. Stollenga, J. Masci, F. Gomez, and J. Schmidhuber. Deep networks with internal selective attention through feedback connections. In Proc. NIPS, 2014.
[86]
H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. Multi-view convolutional neural networks for 3D shape recognition. In Proc. ICCV, 2015.
[87]
J. Sun, M. Ovsjanikov, and L. J. Guibas. A concise and provably informative multi-scale signature based on heat diffusion. In Proc. SGP, 2009.
[88]
J. Süssmuth, M. Winter, and G. Greiner. Reconstructing animated meshes from time-varying point clouds. Computer Graphics Forum, 27(5):1469--1476, 2008.
[89]
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. Technical report, 2014.
[90]
J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation. In Proc. CVPR, 2012.
[91]
A. Tevs, A. Berner, M. Wand, I. Ihrke, M. Bokeloh, J. Kerber, and H.-P. Seidel. Animation cartography - intrinsic reconstruction of shape and motion. Trans. Graphics, 31(2):12:1--12:15, 2012.
[92]
J. Tompson, M. Stein, Y. LeCun, and K. Perlin. Real-time continuous pose recovery of human hands using convolutional networks. Trans. Graphics, 33(5), 2014.
[93]
P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. JMLR, 11:3371--3408, 2010.
[94]
D. Vlasic, I. Baran, W. Matusik, and J. Popović. Articulated mesh animation from multi-view silhouettes. Trans. Graphics, 27(3), 2008.
[95]
M. Wand, B. Adams, M. Ovsjanikov, A. Berner, M. Bokeloh, P. Jenke, L. Guibas, H.-P. Seidel, and A. Schilling. Efficient reconstruction of nonrigid shape and motion from real-time 3D scanner data. Trans. Graphics, 28(2), 2009.
[96]
S. Wang and C. Manning. Fast dropout training. In Proc. ICML, 2013.
[97]
L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense human body correspondences using convolutional networks. In Proc. CVPR, 2016.
[98]
X. Wei, P. Zhang, and J. Chai. Accurate realtime full-body motion capture using a single depth camera. Trans. Graphics, 31(6), 2012.
[99]
P. J. Werbos. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University, 1974.
[100]
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao. 3D Shapenets: A deep representation for volumetric shapes. In Proc. CVPR, 2015.
[101]
K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio. Show, attend and tell: Neural image caption generation with visual attention. In Proc. ICML, 2015.
[102]
F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In Proc. ICLR. 2016.
[103]
M. E. Yumer and N. J. Mitra. Learning semantic deformation flows with 3d convolutional networks. In Proc. ECCV, 2016.
[104]
S. Zagoruyko and N. Komodakis. Learning to compare image patches via convolutional neural networks. In Proc. CVPR, 2015.
[105]
S. Zagoruyko, A. Lerer, T.-Y. Lin, P. O. Pinheiro, S. Gross, S. Chintala, and P. Dollár. A multipath network for object detection. In Proc. BMVC, 2016.
[106]
A. Zeng, S. Song, M. Nießner, M. Fisher, and J. Xiao. 3DMatch: Learning the matching of local 3D geometry in range scans. arXiv:1603.08182, 2016.
[107]
S. Zhou, J. Wu, Y. Wu, and X. Zhou. Exploiting local structures with the kronecker layer in convolutional networks. arXiv:1512.09194, 2015.

Cited By

View all
  • (2024)InceptCurves: curve reconstruction using an inception networkThe Visual Computer10.1007/s00371-024-03477-140:7(4805-4815)Online publication date: 12-Jun-2024
  • (2024)Improved biharmonic kernel signature for 3D non-rigid shape matching and retrievalThe Visual Computer10.1007/s00371-023-03254-6Online publication date: 12-Feb-2024
  • (2023)Can Graph Neural Networks Go Deeper Without Over-Smoothing? Yes, With a Randomized Path Exploration!IEEE Transactions on Emerging Topics in Computational Intelligence10.1109/TETCI.2023.32492557:5(1595-1604)Online publication date: Oct-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SA '16: SIGGRAPH ASIA 2016 Courses
November 2016
1732 pages
ISBN:9781450345385
DOI:10.1145/2988458
  • Conference Chair:
  • Niloy J. Mitra
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 November 2016

Check for updates

Qualifiers

  • Course

Conference

SA '16
Sponsor:
SA '16: SIGGRAPH Asia 2016
December 5 - 8, 2016
Macau

Acceptance Rates

Overall Acceptance Rate 178 of 869 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)94
  • Downloads (Last 6 weeks)2
Reflects downloads up to 03 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)InceptCurves: curve reconstruction using an inception networkThe Visual Computer10.1007/s00371-024-03477-140:7(4805-4815)Online publication date: 12-Jun-2024
  • (2024)Improved biharmonic kernel signature for 3D non-rigid shape matching and retrievalThe Visual Computer10.1007/s00371-023-03254-6Online publication date: 12-Feb-2024
  • (2023)Can Graph Neural Networks Go Deeper Without Over-Smoothing? Yes, With a Randomized Path Exploration!IEEE Transactions on Emerging Topics in Computational Intelligence10.1109/TETCI.2023.32492557:5(1595-1604)Online publication date: Oct-2023
  • (2023)Explainable deep learning for tumor dynamic modeling and overall survival prediction using Neural-ODEnpj Systems Biology and Applications10.1038/s41540-023-00317-19:1Online publication date: 18-Nov-2023
  • (2023)DGCN: Learning Graph Representations Via Dense ConnectionsProcedia Computer Science10.1016/j.procs.2023.10.082225(951-960)Online publication date: 2023
  • (2022)Group equivariant networks for leakage detection in vacuum bagging2022 30th European Signal Processing Conference (EUSIPCO)10.23919/EUSIPCO55093.2022.9909715(1437-1441)Online publication date: 29-Aug-2022
  • (2022)Semi-Supervised Principal Neighbourhood Aggregation Model For Sar Image Classification2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)10.1109/SITIS57111.2022.00046(211-217)Online publication date: Oct-2022
  • (2021)Geometric Deep Learning for Multi-Object Tracking: A Brief Review2021 9th European Workshop on Visual Information Processing (EUVIP)10.1109/EUVIP50544.2021.9484040(1-6)Online publication date: 23-Jun-2021
  • (2021)A survey on deep learning and its applicationsComputer Science Review10.1016/j.cosrev.2021.10037940:COnline publication date: 1-May-2021
  • (2021)Spectral Shape Recovery and Analysis Via Data-driven ConnectionsInternational Journal of Computer Vision10.1007/s11263-021-01492-6129:10(2745-2760)Online publication date: 1-Oct-2021
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media