Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Robust hex-dominant mesh generation using field-guided polyhedral agglomeration

Published: 20 July 2017 Publication History

Abstract

We propose a robust and efficient field-aligned volumetric meshing algorithm that produces hex-dominant meshes, i.e. meshes that are predominantly composed of hexahedral elements while containing a small number of irregular polyhedra. The latter are placed according to the singularities of two optimized guiding fields, which allow our method to generate meshes with an exceptionally high amount of isotropy.
The field design phase of our method relies on a compact quaternionic representation of volumetric octa-fields and a corresponding optimization that explicitly models the discrete matchings between neighboring elements. This optimization naturally supports alignment constraints and scales to very large datasets. We also propose a novel extraction technique that uses field-guided mesh simplification to convert the optimized fields into a hexdominant output mesh. Each simplification operation maintains topological validity as an invariant, ensuring manifold output. These steps easily generalize to other dimensions or representations, and we show how they can be an asset in existing 2D surface meshing techniques.
Our method can automatically and robustly convert any tetrahedral mesh into an isotropic hex-dominant mesh and (with minor modifications) can also convert any triangle mesh into a corresponding isotropic quad-dominant mesh, preserving its genus, number of holes, and manifoldness. We demonstrate the benefits of our algorithm on a large collection of shapes provided in the supplemental material along with all generated results.

Supplementary Material

ZIP File (a114-gao.zip)
Supplemental files.
MP4 File (papers-0403.mp4)

References

[1]
2016. AMPS. http://www.ampstech.com/ampstech/Asp/Solid.asp. (2016). Accessed: 2016-09-15.
[2]
2016. ANSYSTurbogrid. http://www.ansys.com/Products/Fluids/ANSYS-TurboGrid/ANSYS-TurboGrid-Features#1. (2016). Accessed: 2016-09-15.
[3]
2016. Apex. http://www.mscapex.com/apex-modeler/. (2016). Accessed: 2016-09-15.
[4]
2016. Autodesk Simulation-Mechanical. http://www.autodesk.com/products/simulation-mechanical/features/all/gallery-view. (2016). Accessed: 2016-09-15.
[5]
2016. BETA CAE. http://www.beta-cae.com/ansa.htm. (2016). Accessed: 2016-09-15.
[6]
2016. Bolt. http://www.csimsoft.com/boltoverview. (2016). Accessed: 2016-09-03.
[7]
2016. Cart3D. http://people.nas.nasa.gov/~aftosmis/cart3d/. (2016). Accessed: 2016-09-15.
[8]
2016. CUBIT. http://cubit.sandia.gov/. (2016). Accessed: 2016-09-15.
[9]
2016. Harpoon. http://www.sharc.co.uk/index.htm. (2016). Accessed: 2016-09-15.
[10]
2016. Hexotic. https://www.rocq.inria.fr/gamma/gamma/Membres/CIPD/Loic.Marechal/Research/Hexotic.html. (2016). Accessed: 2016-09-15.
[11]
2016. HEXPress. http://www.numeca.com/en/products/automeshtm/hexpresstm. (2016). Accessed: 2016-09-15.
[12]
2016. HyperMesh. http://www.altairhyperworks.com/product/HyperMesh. (2016). Accessed: 2016-09-15.
[13]
2016. Kubrix. http://www.itascacg.com/software/kubrix. (2016). Accessed: 2016-09-15.
[14]
2016. LBIE. http://www.cs.utexas.edu/~bajaj/cvc/software/LBIE.shtml. (2016). Accessed: 2016-09-15.
[15]
2016a. MeshGems. http://meshgems.com/volume-meshing-meshgems-hexa.html. (2016). Accessed: 2016-09-15.
[16]
2016b. MeshGemsHybrid. http://meshgems.com/volume-meshing-meshgems-hybrid.html. (2016). Accessed: 2016-09-15.
[17]
2016. PAMGEN. https://trilinos.org/packages/pamgen/. (2016). Accessed: 2016-09-15.
[18]
2016. SiemenPLM. https://www.plm.automation.siemens.com/en_us/products/lms/virtual-lab/structures/meshing.shtml. (2016). Accessed: 2016-09-15.
[19]
2016. TexMesher. http://texmesher.com/tex.html. (2016). Accessed: 2016-09-15.
[20]
2016. Trelis. http://www.csimsoft.com/trelis.jsp. (2016). Accessed: 2016-09-15.
[21]
2016. XBX. http://texmesher.com/kbx.html. (2016). Accessed: 2016-09-15.
[22]
Steven E. Benzley, Ernest Perry, Karl Merkley, Brett Clark, and Greg Sjaardema. 1995. A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis. In In Proceedings, 4th International Meshing Roundtable. 179--191.
[23]
J.E. Bishop. 2014. A displacement-based finite element formulation for general polyhedra using harmonic shape functions. Internat. J. Numer. Methods Engrg. 97, 1 (2014), 1--31.
[24]
David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini, and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. In Computer Graphics Forum, Vol. 32. Wiley Online Library, 51--76.
[25]
David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation. ACM Trans. Graph. 28, 3 (July 2009), 77:1--77:10.
[26]
M. Brewer, L. Diachin, P. Knupp, T. Leurent, and D. Melander. 2003. The Mesquite Mesh Quality Improvement Toolkit. In Proc. of the 12th International Meshing Roundtable. 239--250.
[27]
A. O. Cifuentes and A. Kalbag. 1992. A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Elements in Analysis and Design 12, 3--4 (1992), 313--318.
[28]
Olga Diamanti, Amir Vaxman, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Integrable PolyVector Fields. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH) 34, 4 (2015).
[29]
Tor Dokken, Tom Lyche, and Kjell Fredrik Pettersen. 2013. Polynomial Splines over Locally Refined Box-partitions. Comput. Aided Geom. Des. 30, 3 (March 2013), 331--356.
[30]
Randall Dougherty, Vance Faber, and Michael Murphy. 2004. Unflippable Tetrahedral Complexes. Discrete & Computational Geometry 32, 3 (2004), 309--315.
[31]
Xianzhong Fang, Weiwei Xu, Hujun Bao, and Jin Huang. 2016. All-hex meshing using closed-form induced polycube. ACM Transactions on Graphics (TOG) 35, 4 (2016), 124.
[32]
Xiaoming Fu, Chongyang Bai, and Yang Liu. 2016. Efficient Volumetric PolyCube-Map Construction. Computer Graphics Forum (Pacific Graphics) 35, 7 (2016).
[33]
Carlotta Giannelli, Bert JüTtler, and Hendrik Speleers. 2012. THB-splines: The Truncated Basis for Hierarchical Splines. Comput. Aided Geom. Des. 29, 7 (Oct. 2012), 485--498.
[34]
James Gregson, Alla Sheffer, and Eugene Zhang. 2011. All-Hex Mesh Generation via Volumetric PolyCube Deformation. CGF 30, 5 (2011), 1407--1416.
[35]
Jin Huang, Tengfei Jiang, Zeyun Shi, Yiying Tong, Hujun Bao, and Mathieu Desbrun. 2014. L1-based Construction of Polycube Maps from Complex Shapes. ACM Trans. Graph. 33, 3 (2014), 25:1--25:11.
[36]
Jin Huang, Yiying Tong, Hongyu Wei, and Hujun Bao. 2011. Boundary Aligned Smooth 3D Cross-frame Field. ACM Trans. Graph. 30, 6 (Dec. 2011), 143:1--143:8.
[37]
Yasushi Ito, Alan M. Shih, and Bharat K. Soni. 2009. Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates. Int. J. Numer. Meth. Engng 77 (2009), 1809--1833.
[38]
Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant Field-aligned Meshes. ACM Trans. Graph. 34, 6 (Oct. 2015), 189:1--189:15.
[39]
Tengfei Jiang, Jin Huang, Yiying Tong Yuanzhen Wang, and Hujun Bao. 2014. Frame Field Singularity Correction for Automatic Hexahedralization. IEEE TVCG 20, 8 (Aug. 2014), 1189--1199.
[40]
Hongmei Kang, Jinlan Xu, Falai Chen, and Jiansong Deng. 2015. A New Basis for PHT-splines. Graph. Models 82, C (Nov. 2015), 149--159.
[41]
Bo Li, Xin Li, Kexiang Wang, and Hong Qin. 2013. Surface Mesh to Volumetric Spline Conversion with Generalized Poly-cubes. IEEE TVCG 19, 9 (2013), 1539--1551.
[42]
Yufei Li, Yang Liu, Weiwei Xu, Wenping Wang, and Baining Guo. 2012. All-hex Meshing Using Singularity-restricted Field. ACM Trans. Graph. 31, 6 (Nov. 2012), 177:1--177:11.
[43]
Marco Livesu, Alessandro Muntoni, Enrico Puppo, and Riccardo Scateni. 2016. Skeleton-driven Adaptive Hexahedral Meshing of Tubular Shapes. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 237--246.
[44]
Marco Livesu, Nicholas Vining, Alla Sheffer, James Gregson, and Riccardo Scateni. 2013. PolyCut: monotone graph-cuts for PolyCube base-complex construction. ACM Trans. Graph. 32, 6 (2013), 171.
[45]
Max Lyon, David Bommes, and Leif Kobbelt. 2016. HexEx: Robust Hexahedral Mesh Extraction. ACM Trans. Graph. 35, 4, Article 123 (July 2016), 11 pages.
[46]
Loïc Maréchal. 2009. Advances in octree-based all-hexahedral mesh generation: handling sharp features. In proceedings of the 18th International Meshing Roundtable. Springer, 65--84.
[47]
Sebastian Martin, Peter Kaufmann, Mario Botsch, Martin Wicke, and Markus Gross. 2008. Polyhedral Finite Elements Using Harmonic Basis Functions. In Proceedings of the Symposium on Geometry Processing (SGP '08). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 1521--1529.
[48]
Matthias Nieser, Ulrich Reitebuch, and Konrad Polthier. 2011. CubeCover- Parameterization of 3D Volumes. CGF 30, 5 (2011), 1397--1406.
[49]
Steven J. Owen and Sunil Saigal. 2000. H-Morph: an indirect approach to advancing front hex meshing. Internat. J. Numer. Methods Engrg. 49, 1--2 (2000), 289--312.
[50]
Nicolas Ray, Wan Chiu Li, Bruno Lévy, Alla Sheffer, and Pierre Alliez. 2006. Periodic Global Parameterization. ACM Trans. Graph. 25, 4 (Oct. 2006), 1460--1485.
[51]
Nicolas Ray and Dmitry Sokolov. 2015. On Smooth 3D Frame Field Design. CoRR abs/1507.03351 (2015).
[52]
Nicolas Ray, Dmitry Sokolov, and Bruno Lévy. 2016. Practical 3D Frame Field Generation. ACM Trans. Graph. 35, 6, Article 233 (Nov. 2016), 9 pages.
[53]
Maxence Reberol and Bruno Lévy. 2016. Low-order continuous finite element spaces on hybrid non-conforming hexahedral-tetrahedral meshes. CoRR abs/1605.02626 (2016). http://arxiv.org/abs/1605.02626
[54]
Thomas W. Sederberg, Jianmin Zheng, Almaz Bakenov, and Ahmad Nasri. 2003. T-splines and T-NURCCs. ACM Trans. Graph. 22, 3 (July 2003), 477--484.
[55]
Jason F. Shepherd and Chris R. Johnson. 2008. Hexahedral Mesh Generation Constraints. Eng. with Comput. 24, 3 (June 2008), 195--213.
[56]
Hang Si. 2015. TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator. ACM Trans. Math. Softw. 41, 2, Article 11 (Feb. 2015), 36 pages.
[57]
Dmitry Sokolov, Nicolas Ray, Lionel Untereiner, and Bruno Lévy. 2016. Hexahedral-Dominant Meshing. ACM Trans. Graph. 35, 5 (June 2016), 157:1--157:23.
[58]
Yi Su, KH Lee, and A Senthil Kumar. 2004. Automatic hexahedral mesh generation for multi-domain composite models using a hybrid projective grid-based method. Computer-Aided Design 36, 3 (2004), 203--215.
[59]
Srinivas C. Tadepalli, Ahmet Erdemir, and Peter R. Cavanagh. 2010. A Comparison of the Performance of Hexahedral and Tetrahedral Elements in Finite Element Models of the Foot. In ASME 2010 Summer Bioengineering Conference, Parts A and B. Naples, Florida, USA.
[60]
Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes, Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design, and Processing. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 545--572.
[61]
Soji Yamakawa and Kenji Shimada. 2003. Fully-automated hex-dominant mesh generation with directionality control via packing rectangular solid cells. Internat. J. Numer. Methods Engrg. 57, 15 (2003), 2099--2129.
[62]
Hongmei Zhang, Guoqun Zhao, and Xinwu Ma. 2007. Adaptive generation of hexahedral element mesh using an improved grid-based method. Computer-Aided Design 39, 10 (2007), 914--928.
[63]
Yongjie Zhang and Chandrajit Bajaj. 2006. Adaptive and quality quadrilateral/hexahedral meshing from volumetric data. Computer methods in applied mechanics and engineering 195, 9 (2006), 942--960.
[64]
Y. J. Zhang, X. Liang, and Guoliang Xu. 2013. A robust 2-refinement algorithm in octree or rhombic dodecahedral tree based all-hexahedral mesh generation. Computer Methods in Applied Mechanics and Engineering 256 (2013), 88--100.

Cited By

View all

Index Terms

  1. Robust hex-dominant mesh generation using field-guided polyhedral agglomeration

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 36, Issue 4
    August 2017
    2155 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3072959
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 20 July 2017
    Published in TOG Volume 36, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. 3D frame field
    2. hexahedral dominant
    3. quaternionic representation
    4. singularity graph

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)238
    • Downloads (Last 6 weeks)43
    Reflects downloads up to 09 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2025)Improved hexahedral mesh generation from quadrilateral surface meshesComputers & Structures10.1016/j.compstruc.2024.107620307(107620)Online publication date: Jan-2025
    • (2024)Stress‐Aligned Hexahedral Lattice StructuresComputer Graphics Forum10.1111/cgf.15265Online publication date: 28-Oct-2024
    • (2024)MBA: Backdoor Attacks Against 3D Mesh ClassifierIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.334664419(2127-2142)Online publication date: 1-Jan-2024
    • (2023)Feature Preserving Parameterization for Quadrilateral Mesh Generation Based on Ricci Flow and Cross FieldComputer Modeling in Engineering & Sciences10.32604/cmes.2023.027296137:1(843-857)Online publication date: 2023
    • (2023)Locally Meshable Frame FieldsACM Transactions on Graphics10.1145/359245742:4(1-20)Online publication date: 26-Jul-2023
    • (2023)Orientable Dense Cyclic Infill for Anisotropic Appearance FabricationACM Transactions on Graphics10.1145/359241242:4(1-13)Online publication date: 26-Jul-2023
    • (2023)Metric-Driven 3D Frame Field GenerationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.313619929:4(1964-1976)Online publication date: 1-Apr-2023
    • (2023)Adaptive octree meshes for simulation of extracellular electrophysiologyJournal of Neural Engineering10.1088/1741-2552/acfabf20:5(056028)Online publication date: 29-Sep-2023
    • (2023)Exploration of 3D motorcycle complexes from hexahedral meshesComputers & Graphics10.1016/j.cag.2023.06.005114(105-115)Online publication date: Aug-2023
    • (2022)Hex-Mesh Generation and Processing: A SurveyACM Transactions on Graphics10.1145/355492042:2(1-44)Online publication date: 18-Oct-2022
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media