Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA

Published: 27 September 2017 Publication History

Abstract

This paper proposes RISE, an automated Reconfigurable framework for real-time background subtraction applied to Intelligent video SurveillancE. RISE is devised with a new streaming-based methodology that adaptively learns/updates a corresponding dictionary matrix from background pixels as new video frames are captured over time. This dictionary is used to highlight the foreground information in each video frame. A key characteristic of RISE is that it adaptively adjusts its dictionary for diverse lighting conditions and varying camera distances by continuously updating the corresponding dictionary. We evaluate RISE on natural-scene vehicle images of different backgrounds and ambient illuminations. To facilitate automation, we provide an accompanying API that can be used to deploy RISE on FPGA-based system-on-chip platforms. We prototype RISE for end-to-end deployment of three widely-adopted image processing tasks used in intelligent transportation systems: License Plate Recognition (LPR), image denoising/reconstruction, and principal component analysis. Our evaluations demonstrate up to 87-fold higher throughput per energy unit compared to the prior-art software solution executed on ARM Cortex-A15 embedded platform.

References

[1]
V. Cevher, A. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, and R. Chellappa. 2008. Compressive sensing for background subtraction. 155--168.
[2]
D. Schreiber and M. Rauter. 2009. GPU-based non-parametric background subtraction for a practical surveillance system. 870--877.
[3]
F. Porikli. 2006. Achieving real-time object detection and tracking under extreme conditions. Journal of Real-Time Image Processing 1, 1, 33--40.
[4]
J. Oliveira, A. Printes, R. Freire, E. Melcher, and I.S. Silva. 2006. FPGA architecture for static background subtraction in real time. 26--31.
[5]
C. Sanchez-Ferreira J. Mori, and C. Llanos. 2012. Background subtraction algorithm for moving object detection in FPGA. 1--6.
[6]
C. Lu, J. Shi, and J. Jia. 2013. Online robust dictionary learning. 415--422.
[7]
E. J. Candès and M. B. Wakin. 2008. An introduction to compressive sampling. IEEE signal processing magazine, 25, 2, 21--30.
[8]
J. Tropp, A. C. Gilbert et al. 2007. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53, 12, 4655--4666.
[9]
A. Mirhoseini, E. Dyer, E. Songhori, R. Baraniuk, and F. Koushanfar. 2015. Rankmap: A platform-aware framework for distributed learning from dense datasets. arXiv preprint arXiv:1503.08169.
[10]
A. Mirhoseini, B. D. Rouhani, E. M. Songhori, and F. Koushanfar. 2016. Perform-ml: Performance optimized machine learning by platform and content aware customization. 20.
[11]
J. Sauvola and M. Pietikäinen. 2000. Adaptive document image binarization. Pattern recognition, 33, 2, 225--236.
[12]
M. Karkooti, J. R. Cavallaro, and C. Dick. 2005. FPGA implementation of matrix inversion using qrd-rls algorithm.
[13]
Å. Björck. 1967. Solving linear least squares problems by gram-schmidt orthogonalization. BIT Numerical Mathematics, 7, 1, 1--21.
[14]
W. Hoffmann. 1989. Iterative algorithms for gram-schmidt orthogonalization. Computing, 41, 4, 335--348.
[15]
XILLYBUS. 2017. http://xillybus.com/.
[16]
XPower. 2012. {Online}. Available: http://www.xilinx.com/support/documentation/user_guides/ug440.pdf.
[17]
Rise source codes. https://github.com/Bitadr/RISE.
[18]
Y. Wen, Y. Lu, J. Yan, Z. Zhou, K. M. Von Deneen, and P. Shi. 2011. An algorithm for license plate recognition applied to intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 12, 3, 830--845.
[19]
C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, V. Loumos, and E. Kayafas. 2006. A license plate-recognition algorithm for intelligent transportation system applications. Intelligent Transportation Systems, IEEE Transactions on, 7, 3, 377--392.
[20]
C. Arth, H. Bischof, and C. Leistner. 2006. Tricam-an embedded platform for remote traffic surveillance. 125--125.
[21]
C.-N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos, and E. Kayafas. 2008. License plate recognition from still images and video sequences: A survey. IEEE Transactions on intelligent transportation systems, 9, 3, 377--391.
[22]
M. Elad and M. Aharon. 2006. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image processing, 15, 12, 3736--3745.
[23]
S. D. A. LightField. 2014. {Online}. Available: http://lightfield.stanford.edu/.
[24]
H. R. S. D. Salina. 2014. {Online}. Available: http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes.
[25]
LPR database. 2017. http://www.medialab.ntua.gr/research/LPRdatabase/Still_images/difficult_cases/.
[26]
Video surveillance frame rate. 2016. http://ipvm.com/reports/.
[27]
B. Rouhani, E. Songhori, A. Mirhoseini, and F. Koushanfar. 2015. Ssketch: An automated framework for streaming sketch-based analysis of big data on FPGA. In 23rd International Symposium on Field-Programmable Custom Computing Machines conference (FCCM).
[28]
M. Andrecut. 2008. Fast GPU implementation of sparse signal recovery from random projections. arXiv preprint arXiv:0809.1833.
[29]
J. D. Blanchard and J. Tanner. 2013. GPU accelerated greedy algorithms for compressed sensing. Mathematical Programming Computation, 5, 3, 267--304.
[30]
Y. Fang, L. Chen, J. Wu, and B. Huang. 2011. GPU implementation of orthogonal matching pursuit for compressive sensing. 1044--1047.
[31]
P. Maechler, P. Greisen, N. Felber, and A. Burg. 2010. Matching pursuit: Evaluation and implementatio for LTE channel estimation. 589--592.
[32]
A. Septimus and R. Steinberg. 2010. Compressive sampling hardware reconstruction. 3316--3319.
[33]
L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin. 2012. High-speed compressed sensing reconstruction on FPGA using OMP and AMP. 53--56.
[34]
J. L. Stanislaus and T. Mohsenin. 2013. Low-complexity FPGA implementation of compressive sensing reconstruction. 671--675.
[35]
A. M. Kulkarni, H. Homayoun, and T. Mohsenin. 2014. A parallel and reconfigurable architecture for efficient OMP compressive sensing reconstruction. 299--304.
[36]
T. Hosaka, T. Kobayashi, and N. Otsu. 2011. Object detection using background subtraction and foreground motion estimation. IPSJ Transactions on Computer Vision and Applications, 3, 9--20.
[37]
P. Viola, M. J. Jones, and D. Snow. 2005. Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision, 63, 2, 153--161.
[38]
K. Mikolajczyk and C. Schmid. 2005. A performance evaluation of local descriptors. IEEE transactions on pattern analysis and machine intelligence, 27, 10, 1615--1630.

Cited By

View all
  • (2022)On Restricted Computational Systems, Real-time Multi-tracking and Object Recognition Tasks are Possible2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)10.1109/IEEM55944.2022.9989755(1523-1528)Online publication date: 7-Dec-2022
  • (2021)Deep-Framework: A Distributed, Scalable, and Edge-Oriented Framework for Real-Time Analysis of Video StreamsSensors10.3390/s2112404521:12(4045)Online publication date: 11-Jun-2021
  • (2020)Intelligent Video Analytic for Suspicious Object Detection : A Systematic Review2020 International Conference on ICT for Smart Society (ICISS)10.1109/ICISS50791.2020.9307600(1-8)Online publication date: 19-Nov-2020
  • Show More Cited By

Index Terms

  1. RISE: An Automated Framework for Real-Time Intelligent Video Surveillance on FPGA

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Transactions on Embedded Computing Systems
        ACM Transactions on Embedded Computing Systems  Volume 16, Issue 5s
        Special Issue ESWEEK 2017, CASES 2017, CODES + ISSS 2017 and EMSOFT 2017
        October 2017
        1448 pages
        ISSN:1539-9087
        EISSN:1558-3465
        DOI:10.1145/3145508
        Issue’s Table of Contents
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Journal Family

        Publication History

        Published: 27 September 2017
        Accepted: 01 June 2017
        Revised: 01 June 2017
        Received: 01 April 2017
        Published in TECS Volume 16, Issue 5s

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Background subtraction
        2. Data streaming
        3. Intelligent video surveillance
        4. License plate recognition
        5. Reconfigurable computing

        Qualifiers

        • Research-article
        • Research
        • Refereed

        Funding Sources

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)83
        • Downloads (Last 6 weeks)13
        Reflects downloads up to 20 Feb 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2022)On Restricted Computational Systems, Real-time Multi-tracking and Object Recognition Tasks are Possible2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)10.1109/IEEM55944.2022.9989755(1523-1528)Online publication date: 7-Dec-2022
        • (2021)Deep-Framework: A Distributed, Scalable, and Edge-Oriented Framework for Real-Time Analysis of Video StreamsSensors10.3390/s2112404521:12(4045)Online publication date: 11-Jun-2021
        • (2020)Intelligent Video Analytic for Suspicious Object Detection : A Systematic Review2020 International Conference on ICT for Smart Society (ICISS)10.1109/ICISS50791.2020.9307600(1-8)Online publication date: 19-Nov-2020
        • (2019)A Systematic Review of Intelligence Video Surveillance: Trends, Techniques, Frameworks, and DatasetsIEEE Access10.1109/ACCESS.2019.29553877(170457-170473)Online publication date: 2019
        • (2018)CausaLearnProceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays10.1145/3174243.3174259(1-10)Online publication date: 15-Feb-2018
        • (2018)A hybrid scheduling algorithm for reconfigurable processor architecture2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA)10.1109/ICIEA.2018.8397812(745-749)Online publication date: May-2018

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Login options

        Full Access

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media