Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

3D printing wireless connected objects

Published: 20 November 2017 Publication History

Abstract

Our goal is to 3D print wireless sensors, input widgets and objects that can communicate with smartphones and other Wi-Fi devices, without the need for batteries or electronics. To this end, we present a novel toolkit for wireless connectivity that can be integrated with 3D digital models and fabricated using commodity desktop 3D printers and commercially available plastic filament materials. Specifically, we introduce the first computational designs that 1) send data to commercial RF receivers including Wi-Fi, enabling 3D printed wireless sensors and input widgets, and 2) embed data within objects using magnetic fields and decode the data using magnetometers on commodity smartphones. To demonstrate the potential of our techniques, we design the first fully 3D printed wireless sensors including a weight scale, flow sensor and anemometer that can transmit sensor data. Furthermore, we 3D print eyeglass frames, armbands as well as artistic models with embedded magnetic data. Finally, we present various 3D printed application prototypes including buttons, smart sliders and physical knobs that wirelessly control music volume and lights as well as smart bottles that can sense liquid flow and send data to nearby RF devices, without batteries or electronics.

References

[1]
3d Printing Industry. 2017. https://3dprintingindustry.com/news/nanotech-pioneer-brings-3d-printable-metal-makers-91202/. (2017).
[2]
J. Adams, Eric. Duoss, T. Malkowski, M. Motala, B. Ahn, R. Nuzzo, J. Bernhard, and J. Lewis. 2011. Conformal printing of electrically small antennas on three-dimensional surfaces. Advanced Materials '11 (2011).
[3]
G. Alemanno, P. Cignoni, N. Pietroni, F. Ponchio, and R. Scopigno. 2014. Interlocking Pieces for Printing Tangible Cultural Heritage Replicas. In Eurographics '14.
[4]
All3DP. 2017. 30 Types of 3D Printer Filament. https://all3dp.com/best-3d-printer-filament-types-pla-abs-pet-exotic-wood-metal/. (2017).
[5]
M. Bächer, B. Hepp, F. Pece, P. Kry, B. Bickel, B. Thomaszewski, and O. Hilliges. 2016. Defsense: Computational design of customized deformable input devices. In CHI.
[6]
BarcodeHQ. 2017. http://www.barcodehq.com/primer.html. (2017).
[7]
B. Bickel, P. Kaufmann, M. Skouras, B. Thomaszewski, D. Bradley, T. Beeler, P. Jackson, S. Marschner, W. Matusik, and M. Gross. 2012. Physical face cloning. ACM Trans. Graph. (July 2012), 118:1--118:10.
[8]
J. Chan and S. Gollakota. 2017. Data Storage and Interaction using Magnetized Fabric. In Proceedings of the 30th Annual Symposium on User Interface Software and Technology (UIST '17). ACM.
[9]
P. Deffenbaugh and K. Church. 2013. Fully 3D Printed 2.4 GHz Bluetooth/Wi-Fi Antenna. In Symposium on Microelectronics '13.
[10]
Y. Dong, J. Wang, F. Pellacini, X. Tong, and B. Guo. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. (July 2010), 62:1--62:10.
[11]
Electrifi. 2017. 100g Electrifi Conductive 3D Printing Filament. https://www.multi3dllc.com/product/electrifi-3d-printing-filament/. (2017).
[12]
R. Fletcher and N. Gershenfeld. 2000. Remotely interrogated temperature sensors based on magnetic materials. In IEEE transactions on magnetics '00.
[13]
R. Fletcher, J. Levitan, J. Rosenberg, and N. Gershenfeld. 1996. Application of smart materials to wireless ID tags and remote sensors. In MRS Proceedings.
[14]
W. Gao, Y. Zhang, D. Nazzetta, K. Ramani, and R. Cipra. 2015. RevoMaker: Enabling Multi-directional and Functionally-embedded 3D Printing Using a Rotational Cuboidal Platform. In UIST '15.
[15]
S. Gollakota, F. Adib, D. Katabi, and S. Seshan. 2011. Clearing the RF Smog: Making 802.11N Robust to Cross-technology Interference (SIGCOMM).
[16]
C. Harrison, R. Xiao, and S. Hudson. 2012. Acoustic barcodes: passive, durable and inexpensive notched identification tags. In UIST '12.
[17]
D. L. Hecht. 2001. Printed embedded data graphical user interfaces. In IEEE Computer.
[18]
J. Hook, T. Nappey, S. Hodges, P. Wright, and P. Olivier. 2014. Making 3D Printed Objects Interactive Using Wireless Accelerometers. In CHI EA '14.
[19]
W. Jiang, D. Ferreira, J. Ylioja, J. Goncalves, and V. Kostakos. 2014. Pulse: low bitrate wireless magnetic communication for smartphones. In Ubicomp '14.
[20]
B. Kellogg, A. Parks, S. Gollakota, J. Smith, and D. Wetherall. 2014. Wi-fi Backscatter: Internet Connectivity for RF-powered Devices. In SIGCOMM '14.
[21]
B. Kellogg, V. Talla, S. Gollakota, and J. Smith. 2016. Passive Wi-Fi: bringing low power to Wi-Fi transmissions. In NSDI '16.
[22]
Y. Koyama, S. Sueda, E. Steinhardt, T. Igarashi, A. Shamir, and W. Matusik. 2015. AutoConnect: computational design of 3D-printable connectors. ACM Trans. Graph. (Oct. 2015), 231:1--231:11.
[23]
Y. Lan, Y. Dong, F. Pellacini, and X. Tong. 2013. Bi-scale appearance fabrication. ACM Trans. Graph. (July 2013), 145:1--145:12.
[24]
M. Lau, A. Ohgawara, J. Mitani, and T. Igarashi. 2011. Converting 3D furniture models to fabricatable parts and connectors. ACM Trans. Graph. (July 2011), 85:1--85:6.
[25]
D Li, D. Levin, W. Matusik, and C. Zheng. 2016. Acoustic Voxels: Computational Optimization of Modular Acoustic Filters. ACM Trans. Graph. (July 2016), 88:1--88:12.
[26]
V. Liu, A. Parks, V. Talla, S. Gollakota, D Wetherall, and J. Smith. 2013. Ambient Backscatter: Wireless Communication out of Thin Air. In SIGCOMM '13.
[27]
R. MacCurdy, R. Katzschmann, Y. Kim, and D. Rus. 2015. Printable Hydraulics: A Method for Fabricating Robots by 3D Co-Printing Solids and Liquids. In arXiv preprint.
[28]
B. Macq, P. Alface, and M. Montanola. 2015. Applicability of Watermarking for Intellectual Property Rights Protection in a 3D Printing Scenario. In Web3D '15.
[29]
J. Martínez, J. Dumas, and S. Lefebvre. 2016. Procedural Voronoi Foams for Additive Manufacturing. ACM Trans. Graph. (July 2016), 44:1--44:12.
[30]
Maxim. 2004. MAX2829/MAX2829 Single-/Dual-Band 802.11a/b/g World-Band Transceiver ICs. https://datasheets.maximintegrated.com/en/ds/MAX2828-MAX2829.pdf. (2004).
[31]
Y. Mori and T. Igarashi. 2007. Plushie: an interactive design system for plush toys. ACM Trans. Graph., Article 45 (July 2007).
[32]
F. Moshir and S. Singh. 2014. Wireless Barcodes for Tagging Infrastructure. In MobiCom.
[33]
S. Mueller, S. Im, S. Gurevich, A. Teibrich, L. Pfisterer, F. Guimbretière, and P. Baudisch. 2014. WirePrint: 3D Printed Previews for Fast Prototyping. In UIST '14.
[34]
Optomec. 2017. Optomec, Internet of Things. http://www.optomec.com/printed-electronics/aerosol-jet-core-applications/internet-of-things/. (2017).
[35]
H. Ota, S. Emaminejad, Y. Gao, A. Zhao, E. Wu, S. Challa, K. Chen, H. Fahad, A. Jha, D. Kiriya, et al. 2016. Application of 3D printing for smart objects with embedded electronic sensors and systems. In AMT'16.
[36]
A. Parks, S. Gollakota, and J. Smith. 2014. Turbocharging ambient backscatter communication. In SIGCOMM '14.
[37]
H. Peng, F. Guimbretière, J. McCann, and S. Hudson. 2016a. A 3D Printer for Interactive Electromagnetic Devices. In UIST '16.
[38]
H. Peng, R. Wu, S. Marschner, and F. Guimbretière. 2016b. On-the-fly print: Incremental printing while modelling. In CHI '16.
[39]
T. Pereira, S. Rusinkiewicz, and W. Matusik. 2014. Computational light routing: 3D printed optical fibers for sensing and display. ACM Trans. Graph. (July 2014), 24:1--24:13.
[40]
S. Preradovic, I. Balbin, N. Karmakar, and G. Swiegers. 2009. Multiresonator-based chipless RFID system for low-cost item tracking. In Microwave Theory and Techniques.
[41]
ProtoPasta. 2017. https://www.proto-pasta.com/pages/magnetic-iron-pla. (2017).
[42]
V. Savage, S. Follmer, J. Li, and B. Hartmann. 2015a. Makers' Marks: Physical Markup for Designing and Fabricating Functional Objects. In UIST '15.
[43]
V. Savage, A. Head, B. Hartmann, D. Goldman, G. Mysore, and W. Li. 2015b. Lamello: Passive acoustic sensing for tangible input components. In CHI '15.
[44]
Beaufort Scale. 2017. http://www.spc.noaa.gov/faq/tornado/beaufort.html. (2017).
[45]
M. Schmitz, M. Khalilbeigi, M. Balwierz, R. Lissermann, M. Mühlhäuser, and J. Steimle. 2015. Capricate: A Fabrication Pipeline to Design and 3D Print Capacitive Touch Sensors for Interactive Objects. In UIST '15.
[46]
C. Schüller, D. Panozzo, A. Grundhöfer, H. Zimmer, E. Sorkine, and O. Sorkine-Hornung. 2016. Computational Thermoforming. ACM Trans. Graph., 43:1--43:9.
[47]
C. Schumacher, B. Bickel, J. Rys, S. Marschner, C. Daraio, and M. Gross. 2015. Microstructures to control elasticity in 3D printing. ACM Trans. Graph. (July 2015), 136:1--136:13.
[48]
W. Su, R. Bahr, S. A. Nauroze, and M. M. Tentzeris. 2016. 3D printed reconfigurable helical antenna based on microfluidics and liquid metal alloy. In IEEE International Symposium on Antennas and Propagation.
[49]
V. Subramanian, P. C. Chang, J. B. Lee, S. E. Molesa, D. R. Redinger, and S. K. Volkman. 2006. All-printed RFID tags: Materials and circuit implications. In VLSID'06.
[50]
Z. Sun and I. F. Akyildiz. 2010. Magnetic Induction Communications for Wireless Underground Sensor Networks. In IEEE Transactions on Antennas and Propagation.
[51]
Tedpella. 2017. https://www.tedpella.com/semmisc_html/sempaint.htm. (2017).
[52]
David Tse and Pramod Viswanath. 2005. Fundamentals of Wireless Communication. Cambridge University Press, USA.
[53]
F. Uccheddu, M. Corsini, and M. Barni. 2004. Wavelet-based Blind Watermarking of 3D Models. In Multimedia and Security '04.
[54]
Vaavud. 2017. Vaavud. https://vaavud.com/. (2017).
[55]
M Vázquez, E. Brockmeyer, R. Desai, C. Harrison, and S. Hudson. 2015. 3D Printing Pneumatic Device Controls with Variable Activation Force Capabilities. In CHI '15.
[56]
A. Wang, V. Iyer, V. Talla, J. Smith, and S. Gollakota. 2017. Making Everyday Objects into FM Radio Stations. In NSDI '17.
[57]
L. Wang and E. Whiting. 2016. Buoyancy optimization for computational fabrication. In Eurographics '16.
[58]
K. Willis, E. Brockmeyer, S. Hudson, and I. Poupyrev. 2012. Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices. In UIST '12.
[59]
K. Willis and A. Wilson. 2013. InfraStructs: Fabricating Information Inside Physical Objects for Imaging in the Terahertz Region. ACM Trans. Graph. (July 2013), 138:1--138:10.
[60]
S. Wu, C. Yang, W. Hsu, and L. Lin. 2015. 3D-printed microelectronics for integrated circuitry and passive wireless sensors. In Microsystems & Nanoengineering '15.
[61]
S. Yamazaki, S. Kagami, and M. Mochimaru. 2014. Extracting watermark from 3D prints. In ICPR '14.
[62]
B. Yeo and M. Yeung. 1999. Watermarking 3D objects for verification. In IEEE Computer Graphics and Applications '99.
[63]
Zebra. 2017. RFID. https://www.zebra.com/us/en/products/printers/rfid.html. (2017).
[64]
P. Zhang, M. Rostami, P. Hu, and D. Ganesan. 2016. Enabling practical backscatter communication for on-body sensors. In SIGCOMM '16.

Cited By

View all
  • (2024)Daily Living Activity Recognition with Frequency-Shift WiFi Backscatter TagsSensors10.3390/s2411327724:11(3277)Online publication date: 21-May-2024
  • (2024)Explorando o Potencial da Impressão 3D na Fabricação de Instrumentos Musicais: Revisão SistemáticaExploring the Potential of 3D Printing in Musical Instrument Manufacturing: A Systematic ReviewRevista Vórtex10.33871/vortex.2024.12.861112(1-23)Online publication date: 7-Sep-2024
  • (2024)KeyStubProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314427:4(1-23)Online publication date: 12-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 36, Issue 6
December 2017
973 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3130800
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 November 2017
Published in TOG Volume 36, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. backscatter
  2. internet of things

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)125
  • Downloads (Last 6 weeks)12
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Daily Living Activity Recognition with Frequency-Shift WiFi Backscatter TagsSensors10.3390/s2411327724:11(3277)Online publication date: 21-May-2024
  • (2024)Explorando o Potencial da Impressão 3D na Fabricação de Instrumentos Musicais: Revisão SistemáticaExploring the Potential of 3D Printing in Musical Instrument Manufacturing: A Systematic ReviewRevista Vórtex10.33871/vortex.2024.12.861112(1-23)Online publication date: 7-Sep-2024
  • (2024)KeyStubProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36314427:4(1-23)Online publication date: 12-Jan-2024
  • (2024)Fabricating Customizable 3-D Printed Pressure Sensors by Tuning Infill CharacteristicsIEEE Sensors Journal10.1109/JSEN.2024.335833024:6(7604-7613)Online publication date: 15-Mar-2024
  • (2024)Feasibility of Living Activity Recognition with Frequency-Shift WiFi Backscatter Tags in Homes2024 International Conference on Intelligent Environments (IE)10.1109/IE61493.2024.10599916(9-16)Online publication date: 17-Jun-2024
  • (2024)Embedding of Liquids into Water-Soluble Materials via Additive Manufacturing for Timed Release3D Printing and Additive Manufacturing10.1089/3dp.2023.0015Online publication date: 13-Sep-2024
  • (2024)Performance enhancement of low-cost microstrip patch antennas through 3D-printed conductive geometric formsAEU - International Journal of Electronics and Communications10.1016/j.aeue.2024.155211177(155211)Online publication date: May-2024
  • (2024)Integrating resistance-based sensing into fused filament fabricated mechanical metamaterial structureProgress in Additive Manufacturing10.1007/s40964-024-00635-810:1(465-474)Online publication date: 26-Apr-2024
  • (2023)NaCanva: Exploring and Enabling the Nature-Inspired Creativity for ChildrenProceedings of the ACM on Human-Computer Interaction10.1145/36042627:MHCI(1-25)Online publication date: 13-Sep-2023
  • (2023)Low-cost and Non-visual Labels Using Magnetic PrintingProceedings of the ACM on Human-Computer Interaction10.1145/35932327:EICS(1-18)Online publication date: 19-Jun-2023
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media